Revisiting Essential and Nonessential Settings of Evidential Deep Learning
- URL: http://arxiv.org/abs/2410.00393v1
- Date: Tue, 1 Oct 2024 04:27:07 GMT
- Title: Revisiting Essential and Nonessential Settings of Evidential Deep Learning
- Authors: Mengyuan Chen, Junyu Gao, Changsheng Xu,
- Abstract summary: Evidential Deep Learning (EDL) is an emerging method for uncertainty estimation.
We propose Re-EDL, a simplified yet more effective variant of EDL.
- Score: 70.82728812001807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evidential Deep Learning (EDL) is an emerging method for uncertainty estimation that provides reliable predictive uncertainty in a single forward pass, attracting significant attention. Grounded in subjective logic, EDL derives Dirichlet concentration parameters from neural networks to construct a Dirichlet probability density function (PDF), modeling the distribution of class probabilities. Despite its success, EDL incorporates several nonessential settings: In model construction, (1) a commonly ignored prior weight parameter is fixed to the number of classes, while its value actually impacts the balance between the proportion of evidence and its magnitude in deriving predictive scores. In model optimization, (2) the empirical risk features a variance-minimizing optimization term that biases the PDF towards a Dirac delta function, potentially exacerbating overconfidence. (3) Additionally, the structural risk typically includes a KL-divergence-minimizing regularization, whose optimization direction extends beyond the intended purpose and contradicts common sense, diminishing the information carried by the evidence magnitude. Therefore, we propose Re-EDL, a simplified yet more effective variant of EDL, by relaxing the nonessential settings and retaining the essential one, namely, the adoption of projected probability from subjective logic. Specifically, Re-EDL treats the prior weight as an adjustable hyperparameter rather than a fixed scalar, and directly optimizes the expectation of the Dirichlet PDF provided by deprecating both the variance-minimizing optimization term and the divergence regularization term. Extensive experiments and state-of-the-art performance validate the effectiveness of our method. The source code is available at https://github.com/MengyuanChen21/Re-EDL.
Related papers
- Uncertainty Estimation by Density Aware Evidential Deep Learning [7.328039160501826]
Evidential deep learning (EDL) has shown remarkable success in uncertainty estimation.
We propose a novel method called Density Aware Evidential Deep Learning (DAEDL)
DAEDL integrates the feature space density of the testing example with the output of EDL during the prediction stage.
It demonstrates state-of-the-art performance across diverse downstream tasks related to uncertainty estimation and classification.
arXiv Detail & Related papers (2024-09-13T12:04:45Z) - Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning [0.19418036471925312]
We introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning.
Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis.
arXiv Detail & Related papers (2024-08-05T08:12:25Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
Empirical Risk Minimization (ERM) with squared loss may attain minimax suboptimal error rates.
We show that under mild assumptions, the suboptimality of ERM must be due to large bias rather than variance.
We also show that our estimates imply stability of ERM, complementing the main result of Caponnetto and Rakhlin (2006) for non-Donsker classes.
arXiv Detail & Related papers (2023-05-29T15:25:48Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
In few-shot object detection (FSOD), the two-step training paradigm is widely adopted to mitigate the severe sample imbalance.
Unfortunately, the extreme data scarcity aggravates the proposal distribution bias, hindering the RoI head from evolving toward novel classes.
We introduce a simple yet effective proposal distribution calibration (PDC) approach to neatly enhance the localization and classification abilities of the RoI head.
arXiv Detail & Related papers (2022-12-15T05:09:11Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Disentangling Generative Factors of Physical Fields Using Variational
Autoencoders [0.0]
This work explores the use of variational autoencoders (VAEs) for non-linear dimension reduction.
A disentangled decomposition is interpretable and can be transferred to a variety of tasks including generative modeling.
arXiv Detail & Related papers (2021-09-15T16:02:43Z) - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in
High Dimensions [41.7567932118769]
Empirical Risk Minimization algorithms are widely used in a variety of estimation and prediction tasks.
In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of convex ERM for inference.
arXiv Detail & Related papers (2020-06-16T04:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.