Coulomb coupling between two nanospheres trapped in a bichromatic optical tweezer
- URL: http://arxiv.org/abs/2408.02597v1
- Date: Mon, 5 Aug 2024 16:15:01 GMT
- Title: Coulomb coupling between two nanospheres trapped in a bichromatic optical tweezer
- Authors: Quentin Deplano, Antonio Pontin, Andrea Ranfagni, Francesco Marino, Francesco Marin,
- Abstract summary: We demonstrate the trapping of two nanospheres inside a dual optical tweezer generated by two copropagating lasers operating at different wavelengths.
Results highlight the potential of our experimental scheme for future studies on systems of strongly coupled oscillators.
- Score: 0.037008493040610595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Levitated optomechanics is entering the multiparticle regime, paving the way for the use of arrays of strongly coupled massive oscillators to explore complex interacting quantum systems. Here, we demonstrate the trapping of two nanospheres inside a dual optical tweezer generated by two copropagating lasers operating at different wavelengths (1064 nm and 976 nm). Due to the chromatic aberration of the tweezer optics, two focal points are created approximately 9 microns apart, each one acting as an optical trap for a silica nanoparticle. At this distance, the surface charges on the nanospheres produce a Coulomb force that couples their motion along the tweezer axis. The strong coupling regime is achieved, as evidenced by the observed avoided crossing of the normal-mode frequencies. These results highlight the potential of our experimental scheme for future studies on systems of strongly coupled oscillators, including their implementation in optical cavities, both in the classical and in quantum regime.
Related papers
- Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Levitated Optomechanics with Meta-Atoms [0.0]
We introduce additional control in levitated optomechanics by trapping a meta-atom supporting Mie resonances.
We show that optical levitation and center-of-mass ground-state cooling of silicon nanoparticles in vacuum is not only experimentally feasible but it offers enhanced performance.
arXiv Detail & Related papers (2022-11-15T15:50:51Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Optical-force-mediated coupling between levitated nanospheres can go
ultrastrong [0.0]
We investigate the effect of optical-force-mediated interactions onto the quantum dynamics of a pair of nanospheres optically trapped in two neighboring optical tweezers.
Thanks to the interference between the tweezer beams and the elastically scattered light by the other nanosphere, the effective inter nanosphere coupling can reach the ultrastrong coupling regime.
arXiv Detail & Related papers (2022-03-18T18:59:59Z) - Steady motional entanglement between two distant levitated nanoparticles [0.6091702876917279]
We consider two distant nanoparticles, both of which are optically trapped in two cavities.
Based on the coherent scattering mechanism, we find that the ultrastrong optomechanical coupling between the cavity modes and the motion of the levitated nanoparticles could achieve.
The large and steady entanglement between the filtered output cavity modes and the motion of nanosparticles can be generated, if the trapping laser is under the red sideband.
arXiv Detail & Related papers (2021-11-23T02:43:18Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.