Quantum information theory on sparse wavefunctions and applications for Quantum Chemistry
- URL: http://arxiv.org/abs/2408.02631v1
- Date: Mon, 5 Aug 2024 16:54:20 GMT
- Title: Quantum information theory on sparse wavefunctions and applications for Quantum Chemistry
- Authors: Davide Materia, Leonardo Ratini, Leonardo Guidoni,
- Abstract summary: SparQ is designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wavefunctions sparse in their definition space.
The effectiveness of SparQ is validated by analyzing the mutual information matrices of wavefunctions for the water molecule and the total entropy of $sim 102$ qubits describing the benzene molecule.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the twofold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wavefunction variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wavefunctions sparse in their definition space. The core methodology involves mapping fermionic wavefunctions to qubit space using fermionic-to-qubits transformations and leveraging the sparse nature of these wavefunctions to evaluate observables and properties of the wavefunction. The effectiveness of SparQ is validated by analyzing the mutual information matrices of wavefunctions for the water molecule and the total entropy of $\sim 10^2$ qubits describing the benzene molecule. This highlights its capability to handle large-scale quantum systems, limited mainly by the capabilities of quantum chemical methods used to retrieve the wavefunctions. The results indicate that quantum information theoretical analysis, so far limited to traditional tensor network methods and study of transition operators, can be applied to all post-Hartree-Fock wavefunctions, extending their applications to larger and more complex chemical systems.
Related papers
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Quantum Information Driven Ansatz (QIDA): shallow-depth empirical
quantum circuits from Quantum Chemistry [0.0]
We propose a new approach for constructing variational quantum circuits, leveraging quantum mutual information associated with classical Quantum Chemistry states.
The proposed methodology gives rise to highly effective ans"atze, surpassing the standard empirical ladder-entangler ansatz in performance.
arXiv Detail & Related papers (2023-09-26T21:50:02Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra [0.37187295985559027]
We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
arXiv Detail & Related papers (2022-04-18T21:42:54Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.