論文の概要: Detection of Compromised Functions in a Serverless Cloud Environment
- arxiv url: http://arxiv.org/abs/2408.02641v1
- Date: Mon, 5 Aug 2024 17:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 12:56:48.522284
- Title: Detection of Compromised Functions in a Serverless Cloud Environment
- Title(参考訳): サーバレスクラウド環境における競合関数の検出
- Authors: Danielle Lavi, Oleg Brodt, Dudu Mimran, Yuval Elovici, Asaf Shabtai,
- Abstract要約: サーバレスコンピューティングは、サーバーレス関数が中心となる、新たなクラウドパラダイムである。
既存のセキュリティソリューションは、すべてのサーバレスアーキテクチャに適用できない。
拡張可能なサーバレスセキュリティ脅威検出モデルを提案する。
- 参考スコア(独自算出の注目度): 24.312198733476063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Serverless computing is an emerging cloud paradigm with serverless functions at its core. While serverless environments enable software developers to focus on developing applications without the need to actively manage the underlying runtime infrastructure, they open the door to a wide variety of security threats that can be challenging to mitigate with existing methods. Existing security solutions do not apply to all serverless architectures, since they require significant modifications to the serverless infrastructure or rely on third-party services for the collection of more detailed data. In this paper, we present an extendable serverless security threat detection model that leverages cloud providers' native monitoring tools to detect anomalous behavior in serverless applications. Our model aims to detect compromised serverless functions by identifying post-exploitation abnormal behavior related to different types of attacks on serverless functions, and therefore, it is a last line of defense. Our approach is not tied to any specific serverless application, is agnostic to the type of threats, and is adaptable through model adjustments. To evaluate our model's performance, we developed a serverless cybersecurity testbed in an AWS cloud environment, which includes two different serverless applications and simulates a variety of attack scenarios that cover the main security threats faced by serverless functions. Our evaluation demonstrates our model's ability to detect all implemented attacks while maintaining a negligible false alarm rate.
- Abstract(参考訳): サーバレスコンピューティングは、サーバーレス関数が中心となる、新たなクラウドパラダイムである。
サーバレス環境では、ソフトウェア開発者は基盤となるランタイムインフラストラクチャを積極的に管理する必要なくアプリケーション開発に集中できるが、既存のメソッドを緩和することが難しいさまざまなセキュリティ脅威への扉を開く。
既存のセキュリティソリューションは、サーバレスインフラストラクチャの大幅な変更や、より詳細なデータの収集にサードパーティサービスに依存するため、すべてのサーバレスアーキテクチャに適用できない。
本稿では,サーバーレスアプリケーションの異常な動作を検出するために,クラウドプロバイダのネイティブ監視ツールを活用する,拡張可能なサーバレスセキュリティ脅威検出モデルを提案する。
我々のモデルは、サーバーレス機能に対する様々なタイプの攻撃に関連する爆発後の異常行動を特定することで、妥協されたサーバーレス機能を検出することを目的としており、そのため、最後の防御線である。
当社のアプローチは、特定のサーバレスアプリケーションに縛られず、脅威の種類に依存しず、モデル調整を通じて適応可能です。
モデルのパフォーマンスを評価するために、AWSクラウド環境でサーバーレスサイバーセキュリティテストベッドを開発しました。
本評価では,疑わしい誤報率を維持しながら,実装された攻撃をすべて検出できるモデルの有効性を実証する。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - SETC: A Vulnerability Telemetry Collection Framework [0.0]
本稿では,SETC(Security Exploit Telemetry Collection)フレームワークを紹介する。
SETCは、堅牢な防御セキュリティ研究のために、再現可能な脆弱性エクスプロイトデータを大規模に生成する。
この研究は、スケーラブルなエクスプロイトデータ生成を可能にし、脅威モデリング、検出方法、分析技術、戦略の革新を促進する。
論文 参考訳(メタデータ) (2024-06-10T00:13:35Z) - Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
Web セキュリティの観点から 5G コアのセキュリティ評価を行った。
我々はSTRIDE脅威モデリングアプローチを用いて、脅威ベクトルと関連する攻撃の完全なリストを定義する。
我々の分析によると、これらのコアはすべて、特定された攻撃ベクトルのうち少なくとも2つに対して脆弱である。
論文 参考訳(メタデータ) (2024-03-04T09:27:11Z) - Leveraging AI Planning For Detecting Cloud Security Vulnerabilities [15.503757553097387]
クラウドコンピューティングサービスは、データストレージ、処理、コラボレーションのためのスケーラブルで費用対効果の高いソリューションを提供する。
アクセス制御のミスコンフィグレーションが、クラウドアタックの主要な要因であることが多い。
本研究では,セキュリティ脆弱性を検出するPDDLモデルを開発し,ランサムウェアなどの広範囲な攻撃につながる可能性がある。
論文 参考訳(メタデータ) (2024-02-16T03:28:02Z) - A Study on the Security Requirements Analysis to build a Zero Trust-based Remote Work Environment [2.1961544533969257]
本稿では,ゼロトラストモデルに基づく詳細なセキュリティ要件を提案し,それに応じて各種クラウドサービスのセキュリティ分析を行う。
セキュリティ分析の結果,ゼロトラストによるクラウドサービスに対する潜在的な脅威と対策を提案した。
論文 参考訳(メタデータ) (2024-01-08T05:50:20Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Preserving Privacy and Security in Federated Learning [21.241705771577116]
ユーザに対するプライバシ保証と,それらによる毒殺攻撃の検出の両方を提供する,原則的フレームワークを開発する。
我々のフレームワークは、セキュアなアグリゲーションのプライバシー保証に違反することなく、中央サーバが有毒なモデル更新を識別することを可能にする。
論文 参考訳(メタデータ) (2022-02-07T18:40:38Z) - Analyzing Machine Learning Approaches for Online Malware Detection in
Cloud [0.0]
プロセスレベルのパフォーマンス指標に基づいてオンラインマルウェア検出を行い、異なる機械学習モデルの有効性を解析する。
我々の分析では、ニューラルネットワークモデルは、クラウド上の仮想マシンのプロセスレベル機能に最も正確なマルウェアを検出できると結論付けている。
論文 参考訳(メタデータ) (2021-05-19T17:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。