論文の概要: When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems
- arxiv url: http://arxiv.org/abs/2306.05923v4
- Date: Mon, 10 Jun 2024 08:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:38:48.698792
- Title: When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems
- Title(参考訳): 認証が不十分な場合--行動に基づくドライバ認証システムのセキュリティについて
- Authors: Emad Efatinasab, Francesco Marchiori, Denis Donadel, Alessandro Brighente, Mauro Conti,
- Abstract要約: 我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
- 参考スコア(独自算出の注目度): 53.2306792009435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many research papers have recently focused on behavioral-based driver authentication systems in vehicles. Pushed by Artificial Intelligence (AI) advancements, these works propose powerful models to identify drivers through their unique biometric behavior. However, these models have never been scrutinized from a security point of view, rather focusing on the performance of the AI algorithms. Several limitations and oversights make implementing the state-of-the-art impractical, such as their secure connection to the vehicle's network and the management of security alerts. Furthermore, due to the extensive use of AI, these systems may be vulnerable to adversarial attacks. However, there is currently no discussion on the feasibility and impact of such attacks in this scenario. Driven by the significant gap between research and practical application, this paper seeks to connect these two domains. We propose the first security-aware system model for behavioral-based driver authentication. We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures designed for our constrained environments. We formalize a realistic system and threat model reflecting a real-world vehicle's network for their implementation. When evaluated on real driving data, our models outclass the state-of-the-art with an accuracy of up to 0.999 in identification and authentication. Moreover, we are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN. We show how attackers can still exploit these systems with a perfect attack success rate (up to 1.000). Finally, we discuss requirements for deploying driver authentication systems securely. Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
- Abstract(参考訳): 最近、多くの研究論文が車両の行動に基づく運転者認証システムに焦点をあてている。
人工知能(AI)の進歩によって推進されたこれらの研究は、ユニークなバイオメトリックな振る舞いを通じてドライバーを識別する強力なモデルを提案する。
しかしながら、これらのモデルは、AIアルゴリズムのパフォーマンスよりも、セキュリティの観点から精査されたことはない。
いくつかの制限と監視により、車両のネットワークへの安全な接続やセキュリティ警告の管理など、最先端の非現実的な実装が可能になる。
さらに、AIの広範な使用により、これらのシステムは敵の攻撃に対して脆弱である可能性がある。
しかし、このシナリオにおけるこのような攻撃の可能性と影響については、現時点では議論されていない。
研究と実用化の間に大きなギャップがあることから,本論文はこれらの2つの領域を結びつけることを目的としている。
本稿では,行動に基づくドライバ認証のための最初のセキュリティ対応システムモデルを提案する。
制約環境向けに設計されたランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,現実の車両のネットワークを反映した現実的なシステムと脅威モデルを定式化した。
実運転データで評価すると、我々のモデルは識別と認証において最大0.999の精度で最先端のモデルより優れている。
さらに,我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を初めて提案する。
我々は、攻撃者が依然としてこれらのシステムを完璧に攻撃成功率(最大1,000)で活用できることを示す。
最後に,ドライバ認証システムをセキュアにデプロイするための要件について論じる。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
関連論文リスト
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
車両内侵入検知システム(IDS)は、目に見える攻撃を検出し、新しい目に見えない攻撃に対する堅牢な防御を提供する必要がある。
これまでの作業は、CAN ID機能のみに依存していたり、手動で機能抽出する従来の機械学習(ML)アプローチを使用していました。
本稿では,これらの制約に対処するために,最先端,斬新,軽量,車内,IDS平均化,深層学習(DL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-15T21:51:56Z) - Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
ハイジャックやスパイ活動を含むサイバー攻撃は、コネクテッドカーに重大な脅威をもたらす。
本稿では,Radio Access Network (RAN) イベント監視による潜在的な攻撃を識別するための新しいアプローチを提案する。
本論文の主な貢献は,複数箇所に同時に出現するデバイスを識別する位置異常検出モジュールである。
論文 参考訳(メタデータ) (2024-07-02T22:42:45Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) は自動運転において大きな応用可能性を持っている。
BadVLMDriverは、物理的オブジェクトを使用して実際に起動できる自動運転のためのVLMに対する最初のバックドア攻撃である。
BadVLMDriverは、赤い風船を持った歩行者に突如、加速を誘導する攻撃の成功率を92%達成する。
論文 参考訳(メタデータ) (2024-04-19T14:40:38Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
運転行動がわずかに変化しただけで、より汚い攻撃は、ネットワーク全体の混雑、燃料消費、さらにはクラッシュリスクさえも、容易に検出されずに増加させる可能性がある。
本稿では,車両制御コマンドの不正な操作,センサ計測に対する偽データ注入攻撃,DoS攻撃の3種類のサイバー攻撃に対するトラフィックモデルフレームワークを提案する。
車両軌跡データを用いた攻撃をリアルタイムに識別するために,GANに基づく新しい生成逆数ネットワーク(generative adversarial network, GAN)を用いた異常検出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:22:10Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。