論文の概要: Self-Taught Evaluators
- arxiv url: http://arxiv.org/abs/2408.02666v2
- Date: Thu, 8 Aug 2024 17:09:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 12:41:05.298700
- Title: Self-Taught Evaluators
- Title(参考訳): 自己学習評価装置
- Authors: Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu, Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, Xian Li,
- Abstract要約: 本稿では,人工的なトレーニングデータのみを用いて,人間のアノテーションを使わずに即興で証明することを目的としたアプローチを提案する。
我々の自己学習評価器は、RewardBench上で75.4から88.3までの強いLDMを改善することができる。
- 参考スコア(独自算出の注目度): 77.92610887220594
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Model-based evaluation is at the heart of successful model development -- as a reward model for training, and as a replacement for human evaluation. To train such evaluators, the standard approach is to collect a large amount of human preference judgments over model responses, which is costly and the data becomes stale as models improve. In this work, we present an approach that aims to im-prove evaluators without human annotations, using synthetic training data only. Starting from unlabeled instructions, our iterative self-improvement scheme generates contrasting model outputs and trains an LLM-as-a-Judge to produce reasoning traces and final judgments, repeating this training at each new iteration using the improved predictions. Without any labeled preference data, our Self-Taught Evaluator can improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with majority vote) on RewardBench. This outperforms commonly used LLM judges such as GPT-4 and matches the performance of the top-performing reward models trained with labeled examples.
- Abstract(参考訳): モデルに基づく評価は、モデル開発の成功の中心であり、トレーニングの報酬モデルとして、そして人間の評価の代替としてである。
このような評価器を訓練するには、モデル応答に対する人間の嗜好判断を大量に集めることが標準的手法であり、コストがかかり、モデルの改善に伴ってデータが不安定になる。
本研究では,人間のアノテーションを使わずに,合成学習データのみを用いて評価者を即時評価する手法を提案する。
ラベル付けされていない命令から、反復的自己改善スキームは対照的なモデル出力を生成し、LLM-as-a-Judgeを訓練し、推論トレースと最終判断を生成し、改良された予測を用いて各新しいイテレーションでこのトレーニングを繰り返す。
ラベル付き選好データがないと、RewardBench上で強力なLLM(Llama3-70B-Instruct)を75.4から88.3(多数決で88.7)に改善できます。
これは GPT-4 などの LLM の審査員よりも優れており、ラベル付き例で訓練された最高の報酬モデルの性能と一致している。
関連論文リスト
- Self-rationalization improves LLM as a fine-grained judge [21.917301609125417]
本稿では,判断モデルの合理性を改善する反復的プロセスである自己帰納化を導入する。
自己合理化は、モデルが同じ入力に対して合理性を持つ複数の判断を生成させることで機能する。
我々のモデルは、SFTで訓練されたモデルと比較して平均62%の利益率で、より高い品質の合理性を生み出すことを学習している。
論文 参考訳(メタデータ) (2024-10-07T21:05:53Z) - Direct Judgement Preference Optimization [66.83088028268318]
我々は、他のモデルのアウトプットを評価し、批判するために、生成的判断として大きな言語モデル(LLM)を訓練する。
我々は,異なるユースケースに対する選好ペアの収集に3つのアプローチを採用し,それぞれが異なる視点から生成判断を改善することを目的としている。
提案モデルは,位置や長さの偏りなどの固有バイアスに強く対応し,実践者が指定した評価プロトコルに柔軟に適用し,下流ジェネレータモデルを改善する上で有用な言語フィードバックを提供する。
論文 参考訳(メタデータ) (2024-09-23T02:08:20Z) - Self-Judge: Selective Instruction Following with Alignment Self-Evaluation [27.69410513313001]
提案手法は, 予測された応答品質が低い場合, 命令の実行を減少させる。
人手による品質スコアを必要とせずに、判断モデルを開発するための新しい自己学習フレームワークであるSelf-Jを紹介する。
論文 参考訳(メタデータ) (2024-09-02T04:14:13Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
本稿では,大規模言語モデルと人的評価を協調させる手法について検討する。
我々はこのバイアスを定量化するためにベイズ統計とt検定を用い、GPTScorerを調整するための再校正手順を開発した。
以上の結果から,再校正したLCM評価器と,複数のユースケースにおけるヒト評価との整合性は有意に改善した。
論文 参考訳(メタデータ) (2024-07-05T09:26:40Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Entailment as Robust Self-Learner [14.86757876218415]
我々は、複数の異なるNLUタスクを文脈的エンターテイメントとして定式化するプロンプト戦略を設計する。
自己学習における擬似ラベル品質向上のための簡易擬似ラベル編集(SimPLE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T18:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。