論文の概要: RewardBench: Evaluating Reward Models for Language Modeling
- arxiv url: http://arxiv.org/abs/2403.13787v2
- Date: Sat, 8 Jun 2024 16:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:43:59.829170
- Title: RewardBench: Evaluating Reward Models for Language Modeling
- Title(参考訳): RewardBench: 言語モデリングのためのRewardモデルの評価
- Authors: Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi,
- Abstract要約: 本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
- 参考スコア(独自算出の注目度): 100.28366840977966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reward models (RMs) are at the crux of successfully using RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. Resources for reward model training and understanding are sparse in the nascent open-source community around them. To enhance scientific understanding of reward models, we present RewardBench, a benchmark dataset and code-base for evaluation. The RewardBench dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We create specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO). We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.
- Abstract(参考訳): リワードモデル(RM)は、事前訓練されたモデルを人間の嗜好に合わせるためにRLHFをうまく活用する段階にあるが、これらのモデルの評価に焦点を当てた研究は比較的少ない。
報酬モデルを評価することは、言語モデルのアライメントに使用される不透明な技術と、どの値が組み込まれているかを理解する機会を与える。
報酬モデルトレーニングと理解のためのリソースは、彼らを取り巻く新しいオープンソースコミュニティでは希少である。
報酬モデルの科学的理解を深めるために,評価のためのベンチマークデータセットとコードベースであるRewardBenchを提案する。
RewardBenchデータセットは、チャット、推論、安全性にまたがる、プロンプトチョーゼンで排除されたトリオのコレクションで、困難で構造化された、配布外のクエリに対して、報酬モデルがどのように機能するかをベンチマークする。
私たちは、微妙だが検証可能な理由(例えば、バグ、誤った事実)を持つRMの特定の比較データセットを作成します。
In the RewardBench leaderboard, we evaluate the reward model training with various method, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO)。
我々は,RLHFプロセスの理解を深めるために,様々な報酬モデルの欠点に続き,拒絶の正当性,推論の限界,指示に関する多くの知見を提示する。
関連論文リスト
- Rethinking Bradley-Terry Models in Preference-Based Reward Modeling: Foundations, Theory, and Alternatives [14.401557416713315]
報奨モデルにおけるBradley-Terryモデル(BT)モデルの使用の基礎を再考する。
我々は,下流最適化の観点から,BTモデルが必須選択ではないことを論じる。
既成のバイナリ分類器と互換性のある,単純で簡単な上行法を提案する。
論文 参考訳(メタデータ) (2024-11-07T18:57:03Z) - RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style [37.97757796124621]
RM-Benchは、微妙な内容の違いに対する感度とスタイルバイアスに対する耐性に基づいて報酬モデルを評価するために設計された新しいベンチマークである。
RM-Bench上で40近い報酬モデルを評価し,最先端モデルでさえ平均性能は46.6%に過ぎなかった。
論文 参考訳(メタデータ) (2024-10-21T16:48:26Z) - General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
我々は、複雑な嗜好構造を効率的に捉えるために、応答を潜在空間に埋め込んだ選好表現学習を導入する。
また、人間からのフィードバックから報酬に基づく強化学習を一般化する嗜好スコアに基づく一般選好最適化(GPO)を提案する。
提案手法は,基礎モデルの微妙な人的価値との整合性を高めることができる。
論文 参考訳(メタデータ) (2024-10-03T04:22:55Z) - Evaluating Robustness of Reward Models for Mathematical Reasoning [14.97819343313859]
本稿では,報酬モデルの信頼性評価のための新しい設計を提案し,これを検証するためにRewardMATHを構築した。
RewardMATHのスコアは、最適化されたポリシーの結果と強く相関し、効果的に報酬過大評価を推定する。
論文 参考訳(メタデータ) (2024-10-02T16:39:58Z) - Quantile Regression for Distributional Reward Models in RLHF [1.8130068086063336]
我々は,1つのスカラー値の代わりに報酬よりも分布を学習する,報酬モデリングの新しいアプローチであるQuantile Reward Models(QRMs)を紹介する。
提案手法は量子レグレッションを用いて、選好よりも完全な、潜在的に多モード分布を推定し、より強力でニュアンスな選好表現を提供する。
実験の結果,QRMはRewardBench上での従来の点推定モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-09-16T10:54:04Z) - Self-Taught Evaluators [77.92610887220594]
本稿では,人工的なトレーニングデータのみを用いて,人間のアノテーションを使わずに即興で証明することを目的としたアプローチを提案する。
我々の自己学習評価器は、RewardBench上で75.4から88.3までの強いLDMを改善することができる。
論文 参考訳(メタデータ) (2024-08-05T17:57:02Z) - HAF-RM: A Hybrid Alignment Framework for Reward Model Training [51.59246299566669]
報酬モデルトレーニングのためのハイブリッドアライメントフレームワークHaF-RMを提案する。
報酬モデルのパフォーマンスとアライメントを高めるための、原則的で効果的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-07-04T23:26:56Z) - DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging [65.41765072566287]
textbfDomain knowledtextbfge merged textbfReward textbfModel(DogeRM)を提案する。
論文 参考訳(メタデータ) (2024-07-01T17:01:54Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。