Classification of Raw MEG/EEG Data with Detach-Rocket Ensemble: An Improved ROCKET Algorithm for Multivariate Time Series Analysis
- URL: http://arxiv.org/abs/2408.02760v1
- Date: Mon, 5 Aug 2024 18:24:09 GMT
- Title: Classification of Raw MEG/EEG Data with Detach-Rocket Ensemble: An Improved ROCKET Algorithm for Multivariate Time Series Analysis
- Authors: Adrià Solana, Erik Fransén, Gonzalo Uribarri,
- Abstract summary: We present a novel ROCKET-based algorithm, named Detach-Rocket Ensemble, specifically designed to deal with high-dimensional data such as EEG and MEG.
Our algorithm leverages pruning to provide an integrated estimation of channel importance, and ensembles to achieve better accuracy and provide a label probability.
We show that Detach-Rocket Ensemble is able to provide both interpretable channel relevance and competitive classification accuracy, even when applied directly to the raw brain data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate Time Series Classification (MTSC) is a ubiquitous problem in science and engineering, particularly in neuroscience, where most data acquisition modalities involve the simultaneous time-dependent recording of brain activity in multiple brain regions. In recent years, Random Convolutional Kernel models such as ROCKET and MiniRocket have emerged as highly effective time series classification algorithms, capable of achieving state-of-the-art accuracy results with low computational load. Despite their success, these types of models face two major challenges when employed in neuroscience: 1) they struggle to deal with high-dimensional data such as EEG and MEG, and 2) they are difficult to interpret. In this work, we present a novel ROCKET-based algorithm, named Detach-Rocket Ensemble, that is specifically designed to address these two problems in MTSC. Our algorithm leverages pruning to provide an integrated estimation of channel importance, and ensembles to achieve better accuracy and provide a label probability. Using a synthetic multivariate time series classification dataset in which we control the amount of information carried by each of the channels, we first show that our algorithm is able to correctly recover the channel importance for classification. Then, using two real-world datasets, a MEG dataset and an EEG dataset, we show that Detach-Rocket Ensemble is able to provide both interpretable channel relevance and competitive classification accuracy, even when applied directly to the raw brain data, without the need for feature engineering.
Related papers
- A convolutional neural network approach to deblending seismic data [1.5488464287814563]
We present a data-driven deep learning-based method for fast and efficient seismic deblending.
A convolutional neural network (CNN) is designed according to the special character of seismic data.
After training and validation of the network, seismic deblending can be performed in near real time.
arXiv Detail & Related papers (2024-09-12T10:54:35Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Understanding learning from EEG data: Combining machine learning and
feature engineering based on hidden Markov models and mixed models [0.0]
Frontal theta oscillations are thought to play an important role in spatial navigation and memory.
EEG datasets are very complex, making changes in the neural signal related to behaviour difficult to interpret.
This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data.
arXiv Detail & Related papers (2023-11-14T12:24:12Z) - Detach-ROCKET: Sequential feature selection for time series classification with random convolutional kernels [0.7499722271664144]
We introduce Sequential Feature Detachment (SFD) to identify and prune non-essential features in ROCKET-based models.
SFD can produce models with better test accuracy using only 10% of the original features.
We also present an end-to-end procedure for determining an optimal balance between the number of features and model accuracy.
arXiv Detail & Related papers (2023-09-25T20:24:36Z) - MS-TCRNet: Multi-Stage Temporal Convolutional Recurrent Networks for Action Segmentation Using Sensor-Augmented Kinematics [2.621434923709917]
This work presents two contributions related to action segmentation on kinematic data.
We introduce two versions of Multi-Stage Temporal Convolutional Recurrent Networks (MS-TCRNet), specifically designed for kinematic data.
Secondly, we propose two new data augmentation techniques, World Frame Rotation and Hand Inversion, which utilize the strong geometric structure of kinematic data to improve algorithm performance and robustness.
arXiv Detail & Related papers (2023-03-14T11:44:58Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Taking ROCKET on an Efficiency Mission: Multivariate Time Series
Classification with LightWaveS [3.5786621294068373]
We present LightWaveS, a framework for accurate multivariate time series classification.
It employs just 2.5% of the ROCKET features, while achieving accuracy comparable to recent deep learning models.
We show that we achieve speedup ranging from 9x to 65x compared to ROCKET during inference on an edge device.
arXiv Detail & Related papers (2022-04-04T10:52:20Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - XCM: An Explainable Convolutional Neural Network for Multivariate Time
Series Classification [64.41621835517189]
We present XCM, an eXplainable Convolutional neural network for MTS classification.
XCM is a new compact convolutional neural network which extracts information relative to the observed variables and time directly from the input data.
We first show that XCM outperforms the state-of-the-art MTS classifiers on both the large and small public UEA datasets.
arXiv Detail & Related papers (2020-09-10T11:55:53Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.