論文の概要: Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.02761v1
- Date: Mon, 5 Aug 2024 18:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:58:20.600663
- Title: Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation
- Title(参考訳): 医用画像セグメンテーションにおけるアウト・オブ・ディストリビューション検出のための次元低減と最近近傍
- Authors: McKell Woodland, Nihil Patel, Austin Castelo, Mais Al Taie, Mohamed Eltaher, Joshua P. Yung, Tucker J. Netherton, Tiffany L. Calderone, Jessica I. Sanchez, Darrel W. Cleere, Ahmed Elsaiey, Nakul Gupta, David Victor, Laura Beretta, Ankit B. Patel Kristy K. Brock,
- Abstract要約: この研究は、肝臓を分断する4つのSwin UNETRとnnU-netモデルのボトルネック特徴にマハラノビス距離(MD)ポストホックを適用した。
モデルが失敗した画像は、高性能で最小の計算負荷で検出された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver on T1-weighted magnetic resonance imaging and computed tomography. By reducing the dimensions of the bottleneck features with either principal component analysis or uniform manifold approximation and projection, images the models failed on were detected with high performance and minimal computational load. In addition, this work explored a non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN drastically improved scalability and performance over MD when both were applied to raw and average-pooled bottleneck features.
- Abstract(参考訳): 臨床的にデプロイされたディープラーニングベースのセグメンテーションモデルは、トレーニングディストリビューション外のデータで失敗することが知られている。
臨床医はセグメンテーションをレビューするが、ほとんどの場合、これらのモデルはうまく機能する傾向にあり、自動化バイアスが悪化する可能性がある。
したがって、推測による分布外画像の検出は、このモデルが失敗する可能性があると臨床医に警告することが重要である。
この研究は、T1強調MRIとCTで肝臓を分画した4つのSwin UNETRとnnU-netモデルのボトルネック特性にMahalanobis(MD)ポストホックを適用した。
主成分分析または一様多様体近似および投影によりボトルネック特性の次元を小さくすることで、モデルが失敗した画像は高い性能と最小の計算負荷で検出された。
さらに、この研究は、近距離KNN(K-th Nears distance)であるMDの非パラメトリックな代替品を探索した。
KNNは、生のボトルネック機能と平均的なボトルネック機能の両方に適用されたとき、MDよりもスケーラビリティとパフォーマンスを大幅に改善した。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
拡散差に基づく皮膚病変のセグメンテーションモデルDiffSegを紹介する。
マルチアウトプット能力は医師のアノテーションの振る舞いを模倣し、セグメンテーション結果の一貫性とあいまいさの可視化を容易にする。
我々は,ISIC 2018 ChallengeデータセットにおけるDiffSegの有効性を示す。
論文 参考訳(メタデータ) (2024-04-25T09:57:52Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models [1.7995110894203483]
本稿では,U-Netのようなセグメンテーションモデルの出力と基底真理との相違をモデル化するRe-Diffinetというフレームワークを紹介する。
その結果、Diceスコアの平均0.55%、HD95の平均16.28%が5倍以上のクロスバリデーションで改善された。
論文 参考訳(メタデータ) (2024-02-12T01:03:39Z) - Dimensionality Reduction for Improving Out-of-Distribution Detection in
Medical Image Segmentation [1.6182609133335621]
この研究は、肝臓を分断するSwin UNETRモデルのボトルネック特徴にMahalanobisのポストホックを適用した。
OOD画像は高い性能と最小の計算負荷で検出された。
論文 参考訳(メタデータ) (2023-08-07T16:58:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Maximum Entropy on Erroneous Predictions (MEEP): Improving model
calibration for medical image segmentation [10.159176702917788]
本稿では,分割ネットワークのトレーニング戦略であるMEEPを紹介する。
脳の磁気共鳴画像(MRI)における白質高強度病変と、心臓MRIにおける心房細動の2つの課題について、提案手法をベンチマークした。
論文 参考訳(メタデータ) (2021-12-22T20:34:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。