Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks
- URL: http://arxiv.org/abs/2408.02797v1
- Date: Mon, 5 Aug 2024 19:25:05 GMT
- Title: Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks
- Authors: Zepeng Zhang, Olga Fink,
- Abstract summary: Leakages are a significant challenge for the efficient and sustainable management of water distribution networks.
Recent approaches have used graph-based data-driven methods.
We propose an algorithm-informed graph neural network (AIGNN) to detect and localize leaks.
- Score: 6.675805308519987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and localizing leakages is a significant challenge for the efficient and sustainable management of water distribution networks (WDN). Leveraging the inherent graph structure of WDNs, recent approaches have used graph-based data-driven methods. However, these methods often learn shortcuts that work well with in-distribution data but fail to generalize to out-of-distribution data. To address this limitation and inspired by the perfect generalization ability of classical algorithms, we propose an algorithm-informed graph neural network (AIGNN). Recognizing that WDNs function as flow networks, incorporating max-flow information can be beneficial for inferring pressures. In the proposed framework, we first train AIGNN to emulate the Ford-Fulkerson algorithm for solving max-flow problems. This algorithmic knowledge is then transferred to address the pressure estimation problem in WDNs. Two AIGNNs are deployed, one to reconstruct pressure based on the current measurements, and another to predict pressure based on previous measurements. Leakages are detected and localized by comparing the outputs of the reconstructor and the predictor. By pretraining AIGNNs to reason like algorithms, they are expected to extract more task-relevant and generalizable features. Experimental results demonstrate that the proposed algorithm-informed approach achieves superior results with better generalization ability compared to GNNs that do not incorporate algorithmic knowledge.
Related papers
- Graph Convolutional Branch and Bound [1.8966938152549224]
This article demonstrates the effectiveness of employing a deep learning model in an optimization pipeline.
In this context, neural networks can be leveraged to rapidly acquire valuable information.
arXiv Detail & Related papers (2024-06-05T09:42:43Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Neural Algorithmic Reasoning with Causal Regularisation [18.299363749150093]
We make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically.
This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step.
We prove that the resulting method, which we call Hint-ReLIC, improves the OOD generalisation capabilities of the reasoner.
arXiv Detail & Related papers (2023-02-20T19:41:15Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
We propose an unsupervised algorithm to find good initialization for input data.
We first notice that each parameter configuration in the parameter space corresponds to one particular downstream task of d-way classification.
We then conjecture that the success of learning is directly related to how diverse downstream tasks are in the vicinity of the initial parameters.
arXiv Detail & Related papers (2023-02-08T23:23:28Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
We present a family of BP-based message-passing algorithms with a reinforcement field that biases towards locally entropic distributions.
These algorithms are capable of training multi-layer neural networks with discrete weights and activations with performance comparable to SGD-inspired solutions.
arXiv Detail & Related papers (2021-10-27T16:52:26Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.