Scrambling-induced entanglement suppression in noisy quantum circuits
- URL: http://arxiv.org/abs/2408.02810v1
- Date: Mon, 5 Aug 2024 20:20:09 GMT
- Title: Scrambling-induced entanglement suppression in noisy quantum circuits
- Authors: Lea Haas, Christian Carisch, Oded Zilberberg,
- Abstract summary: We investigate the effect of dephasing noise on a multi-qubit teleportation protocol that experimentally validated quantum information scrambling.
We find that while scrambling enhances information distribution, it is highly noise-sensitive, leading to decreased teleportation fidelity and an increase in the classical mixing of the quantum state.
Our findings suggest that the information dynamics during thermalization is critically affected by dephasing noise, and confirm that in present-day noisy quantum devices, local information exchange is preferable over long-range information scrambling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum information scrambling is a process happening during thermalization in quantum systems and describes the delocalization of quantum information. It is closely tied to entanglement, a key resource for quantum technologies and an order parameter for quantum many-body phenomena. We investigate the effect of dephasing noise on a multi-qubit teleportation protocol that experimentally validated quantum information scrambling. We find that while scrambling enhances information distribution, it is highly noise-sensitive, leading to decreased teleportation fidelity and an increase in the classical mixing of the quantum state. Using negativity as a mixed-state entanglement measure, we identify two fundamentally different entanglement-scaling regimes: efficient entanglement generation under weak dephasing noise, and entanglement suppression under strong dephasing noise. We show that in the latter, the teleportation consumes more entanglement than the scrambling is able to create. Comparison with a SWAP-gate-based teleportation protocol confirms that the entanglement suppression is a consequence of the scrambling mechanism. Our findings suggest that the information dynamics during thermalization is critically affected by dephasing noise, and confirm that in present-day noisy quantum devices, local information exchange is preferable over long-range information scrambling.
Related papers
- Quantum error correction of motional dephasing using optical dressing [1.8894050583899684]
We demonstrate the effectiveness of a novel protocol on a collective quantum superposition state known as a Rydberg polariton.
We show how our protocol via optical dressing using Raman lasers cancels dephasing and enhances coherence times by more than an order of magnitude.
arXiv Detail & Related papers (2024-09-07T09:15:41Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Noise mitigation in quantum teleportation [0.0]
Noise-mitigation mechanism applicable in both the discrete- and continuous-variable quantum teleportation schemes.
We find that, as long as a bound state is formed in the energy spectrum of the total system, the quantum superiority of the fidelity is persistently recovered.
arXiv Detail & Related papers (2024-02-04T04:56:32Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Steering-enhanced quantum metrology using superpositions of quantum
channels [0.0]
We consider a control system that manipulates the target to pass through superpositions of either dephased or depolarized phase shifts.
We implement proof-of-principle experiments for a superposition of the dephased phase shifts on a IBM Quantum computer.
arXiv Detail & Related papers (2022-06-08T09:15:06Z) - Quantum Noise Sensing by generating Fake Noise [5.8010446129208155]
We propose a framework to characterize noise in a realistic quantum device.
Key idea is to learn about the noise by mimicking it in a way that one cannot distinguish between the real (to be sensed) and the fake (generated) one.
We find that, when applied to the benchmarking case of Pauli channels, the SuperQGAN protocol is able to learn the associated error rates even in the case of spatially and temporally correlated noise.
arXiv Detail & Related papers (2021-07-19T09:42:37Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.