論文の概要: Active Learning for WBAN-based Health Monitoring
- arxiv url: http://arxiv.org/abs/2408.02849v1
- Date: Mon, 5 Aug 2024 22:19:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:28:57.179853
- Title: Active Learning for WBAN-based Health Monitoring
- Title(参考訳): WBANによる健康モニタリングのためのアクティブラーニング
- Authors: Cho-Chun Chiu, Tuan Nguyen, Ting He, Shiqiang Wang, Beom-Su Kim, Ki-Il Kim,
- Abstract要約: 我々は、無線体温ネットワーク(WBAN)における健康モニタリングのための機械学習モデルの必要性から、新しいアクティブな学習問題を考える。
身体センサーの資源が限られているため、WBANでラベル付けされていないサンプルを収集することは、非自明なコストを発生させる。
我々のソリューションは、ターゲットモデルの品質を犠牲にすることなく、データキュレーションコストを大幅に削減することができる。
- 参考スコア(独自算出の注目度): 20.872611484417433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a novel active learning problem motivated by the need of learning machine learning models for health monitoring in wireless body area network (WBAN). Due to the limited resources at body sensors, collecting each unlabeled sample in WBAN incurs a nontrivial cost. Moreover, training health monitoring models typically requires labels indicating the patient's health state that need to be generated by healthcare professionals, which cannot be obtained at the same pace as data collection. These challenges make our problem fundamentally different from classical active learning, where unlabeled samples are free and labels can be queried in real time. To handle these challenges, we propose a two-phased active learning method, consisting of an online phase where a coreset construction algorithm is proposed to select a subset of unlabeled samples based on their noisy predictions, and an offline phase where the selected samples are labeled to train the target model. The samples selected by our algorithm are proved to yield a guaranteed error in approximating the full dataset in evaluating the loss function. Our evaluation based on real health monitoring data and our own experimentation demonstrates that our solution can drastically save the data curation cost without sacrificing the quality of the target model.
- Abstract(参考訳): 本稿では、無線体温ネットワーク(WBAN)における健康モニタリングのための機械学習モデルの必要性から、新たなアクティブな学習問題を考える。
身体センサーの資源が限られているため、WBANでラベル付けされていないサンプルを収集することは、非自明なコストを発生させる。
さらに、トレーニングされた健康モニタリングモデルは、典型的には、データ収集と同じペースで取得できない医療専門家によって生成される必要がある患者の健康状態を示すラベルを必要とする。
これらの課題は、ラベルのないサンプルが無料で、ラベルをリアルタイムでクエリできる古典的なアクティブラーニングとは根本的に異なる。
これらの課題に対処するために、コアセット構築アルゴリズムが提案されるオンラインフェーズと、選択したサンプルをラベル付けして対象モデルを訓練するオフラインフェーズからなる2段階アクティブラーニング手法を提案する。
提案アルゴリズムで選択したサンプルは,損失関数の評価において全データセットを近似する際の誤差が保証されることが証明された。
実際の健康モニタリングデータに基づく評価と独自の実験により,対象モデルの品質を犠牲にすることなく,我々のソリューションがデータキュレーションコストを大幅に削減できることが実証された。
関連論文リスト
- Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
本稿では,データセットに固有の不均衡を,合成データの生成によって緩和する手法を提案する。
我々は,患者メタデータと心臓の形状から合成したテキストを条件に,拡散確率モデルに基づく制御ネットを採用する。
本実験は,データセットの不均衡を緩和する手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-03-28T15:41:43Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - Self-supervised Assisted Active Learning for Skin Lesion Segmentation [18.78959113954792]
ラベルの不足は、高いアノテーションコストと専門的な要件のために、バイオメディカルなイメージセグメンテーションの長年の問題であった。
そこで本研究では,まず,自己教師型学習でセグメンテーションモデルをウォームアップする,冷間開始環境における自己教師型アクティブラーニングフレームワークを提案する。
私たちのアプローチは、既存のベースラインよりも大幅に改善され、有望なパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2022-05-14T09:40:18Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
畳み込みニューラルネットワーク(CNN)は近年,単一目標追跡タスクに成功している。
本稿では,ディープ・ビジュアル・トラッキングのためのアクティブ・ラーニング手法を提案する。
アクティブラーニングの指導のもと、トレーニングされた深層CNNモデルに基づくトラッカーは、ラベリングコストを低減しつつ、競合的なトラッキング性能を達成することができる。
論文 参考訳(メタデータ) (2021-10-17T11:47:56Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
ディープラーニングモデルのトレーニングには、かなりの量のラベル付きイメージが必要です。
多くの公開データセットが、さまざまな病院や診療所のデータで構築されている。
ラベルなしデータを利用した半教師付き深層学習手法であるMixMatchを提案し評価した。
論文 参考訳(メタデータ) (2021-07-24T22:26:50Z) - Message Passing Adaptive Resonance Theory for Online Active
Semi-supervised Learning [30.19936050747407]
オンラインのアクティブ半教師あり学習のためのメッセージパッシング適応共振理論(MPART)を提案する。
MPARTはラベルのないデータのクラスを推論し、トポロジグラフ上のノード間のメッセージパッシングを通じて情報的および代表的サンプルを選択する。
我々は,MPARTがオンラインのアクティブ学習環境において,競合モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-02T14:14:42Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Semi-supervised and Unsupervised Methods for Heart Sounds Classification
in Restricted Data Environments [4.712158833534046]
本研究は、PhyloNet/CinC 2016 Challengeデータセット上で、様々な教師付き、半教師付き、教師なしのアプローチを用いる。
GANをベースとした半教師付き手法が提案され,非ラベルデータサンプルを用いてデータ分散の学習を促進できる。
特に、1D CNN Autoencoderと1クラスSVMを併用した教師なし特徴抽出は、データラベル付けなしで優れた性能が得られる。
論文 参考訳(メタデータ) (2020-06-04T02:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。