論文の概要: Analyzing Data Efficiency and Performance of Machine Learning Algorithms for Assessing Low Back Pain Physical Rehabilitation Exercises
- arxiv url: http://arxiv.org/abs/2408.02855v1
- Date: Mon, 5 Aug 2024 22:49:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:28:57.176623
- Title: Analyzing Data Efficiency and Performance of Machine Learning Algorithms for Assessing Low Back Pain Physical Rehabilitation Exercises
- Title(参考訳): 腰痛リハビリテーション運動評価のための機械学習アルゴリズムのデータ効率と性能の解析
- Authors: Aleksa Marusic, Louis Annabi, Sao Msi Nguyen, Adriana Tapus,
- Abstract要約: ロボットコーチシステムを用いた身体リハビリの文脈における人間の動作分析に焦点をあてる。
この評価は、以前ロボットPoppyが指導した低背痛リハビリテーション演習を行う臨床患者の医療データベース上で実施される。
- 参考スコア(独自算出の注目度): 1.3949483425295313
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Analyzing human motion is an active research area, with various applications. In this work, we focus on human motion analysis in the context of physical rehabilitation using a robot coach system. Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system, such as RGB and RGB-D cameras. As 2D and 3D human pose estimation from RGB images had made impressive improvements, we aim to compare the assessment of physical rehabilitation exercises using movement data obtained from both RGB-D camera (Microsoft Kinect) and estimation from RGB videos (OpenPose and BlazePose algorithms). A Gaussian Mixture Model (GMM) is employed from position (and orientation) features, with performance metrics defined based on the log-likelihood values from GMM. The evaluation is performed on a medical database of clinical patients carrying out low back-pain rehabilitation exercises, previously coached by robot Poppy.
- Abstract(参考訳): 人間の動きを分析することは、様々な応用の活発な研究分野である。
本研究では,ロボット・コーチ・システムを用いた身体リハビリテーションの文脈における人間の動作分析に焦点を当てた。
RGBカメラやRGB-Dカメラなどのセンサシステムで収集した処理動作データに基づいて,コンピュータ支援による身体リハビリテーションの評価は,所定のリハビリテーション演習完了時の患者パフォーマンスの評価を必要とする。
RGB画像からの2次元と3次元の人間のポーズ推定が著しく改善したので、RGB-Dカメラ(Microsoft Kinect)とRGBビデオ(OpenPoseとBlazePoseアルゴリズム)から得られた動きデータを用いて、身体的リハビリテーション運動の評価を比較することを目的としている。
ガウス混合モデル(GMM: Gaussian Mixture Model)は、GMMのログライクな値に基づいて、パフォーマンス指標を定め、位置(および向き)の特徴から採用する。
この評価は、以前ロボットPoppyが指導した低背痛リハビリテーション演習を行う臨床患者の医療データベース上で実施される。
関連論文リスト
- A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
本稿では,低背痛リハビリテーションを施行した臨床患者の医療データセットについて,4つの課題に対処し,提案する。
データセットには、3D Kinectスケルトンの位置と向き、RGBビデオ、2Dスケルトンデータ、正確性を評価するための医用アノテーション、身体部分とタイムパンのエラー分類とローカライゼーションが含まれている。
論文 参考訳(メタデータ) (2024-06-29T19:50:06Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - Cross-Modal Video to Body-joints Augmentation for Rehabilitation
Exercise Quality Assessment [3.544570529705401]
運動に基づくリハビリテーションプログラムは、生活の質を高め、死亡率と再入院を減らすことが示されている。
AIによる仮想リハビリテーションプログラムにより、患者は自宅で独立して運動を完了できる一方、AIアルゴリズムは運動データを分析して患者にフィードバックを与え、臨床医に進捗を報告することができる。
本稿では,RGBビデオを用いてリハビリテーション運動の質を評価するための新しいアプローチを提案する。また,連続したRGBビデオフレームから骨格体関節の配列を抽出し,多対一の連続ニューラルネットワークを用いて解析し,運動品質を評価する。
論文 参考訳(メタデータ) (2023-06-15T23:23:35Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
パーソナライズされたリハビリテーションのための対話型ソーシャルロボット運動指導システムを開発した。
このシステムは、ニューラルネットワークモデルとルールベースのモデルを統合し、患者のリハビリテーション運動を自動的に監視し、評価する。
我々のシステムは,新たな参加者に適応し,専門家の合意レベルに匹敵する,エクササイズを評価するための平均パフォーマンス0.81を達成できる。
論文 参考訳(メタデータ) (2023-05-12T17:37:04Z) - Mimetic Muscle Rehabilitation Analysis Using Clustering of Low
Dimensional 3D Kinect Data [1.53119329713143]
本報告では, 筋損傷による顔面麻痺患者のリハビリテーションに対する非観血的アプローチについて考察する。
本研究は,HB(House-Brackmann)尺度など,現在の主観的アプローチと比較して,リハビリテーションプロセスの客観的化を目的としている。
この研究は、Kinectステレオビジョンカメラを用いて得られた120の計測値を持つ85人の異なる患者のデータセットを含んでいる。
論文 参考訳(メタデータ) (2023-02-15T09:45:27Z) - Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture
Estimation in Rehabilitation [55.41644538483948]
本研究では,リハビリテーションを行う患者の深度画像と2次元ポーズ情報を含む2つのリハビリテーション特異的ポーズデータセットを提案する。
我々は、非リハブベンチマークデータセットに基づいてトレーニングされた、最先端のマーカーレス姿勢推定モデルを用いている。
私たちのデータセットは、リハビリ特有の複雑な姿勢を検出するために、ポーズモデルを訓練するのに使用できます。
論文 参考訳(メタデータ) (2021-08-23T16:18:26Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
ストローク(Strokes)は、アメリカ合衆国の成人障害の主要な原因である。
脳-コンピュータインタフェース(Brain-Computer Interfaces、BCI)は、患者の神経経路の回復または電子補綴器との効果的なコミュニケーションを支援する。
さまざまな機械学習技術とアルゴリズムをBCI技術と組み合わせることで、脳卒中治療にBCIを使うことは、有望で急速に拡大する分野であることを示している。
論文 参考訳(メタデータ) (2020-08-06T19:50:29Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
社会支援ロボットの研究は、神経学的および筋骨格疾患の患者に対する理学療法セッションを増強し、支援する可能性がある。
本稿では,運動の質を予測するために,患者個別の運動の運動特性を動的に選択できる社会支援ロボットのインタラクティブなアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:12:05Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
本稿では,モーションキャプチャシステムを用いたリハビリテーションプログラムにおける患者のパフォーマンスを評価するための計算手法についてレビューする。
エクササイズ評価のための再検討された計算手法は, 離散的な運動スコア, ルールベース, テンプレートベースアプローチの3つのカテゴリに分類される。
論文 参考訳(メタデータ) (2020-02-29T22:18:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。