Multistain Pretraining for Slide Representation Learning in Pathology
- URL: http://arxiv.org/abs/2408.02859v1
- Date: Mon, 5 Aug 2024 22:59:50 GMT
- Title: Multistain Pretraining for Slide Representation Learning in Pathology
- Authors: Guillaume Jaume, Anurag Vaidya, Andrew Zhang, Andrew H. Song, Richard J. Chen, Sharifa Sahai, Dandan Mo, Emilio Madrigal, Long Phi Le, Faisal Mahmood,
- Abstract summary: Self-supervised learning models can learn universal and transferable representations of whole-slide images.
We introduce Madeleine, a multimodal pretraining strategy for slide representation learning.
We demonstrate the quality of slide representations learned by Madeleine on various downstream evaluations.
- Score: 7.564260323883271
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Developing self-supervised learning (SSL) models that can learn universal and transferable representations of H&E gigapixel whole-slide images (WSIs) is becoming increasingly valuable in computational pathology. These models hold the potential to advance critical tasks such as few-shot classification, slide retrieval, and patient stratification. Existing approaches for slide representation learning extend the principles of SSL from small images (e.g., 224 x 224 patches) to entire slides, usually by aligning two different augmentations (or views) of the slide. Yet the resulting representation remains constrained by the limited clinical and biological diversity of the views. Instead, we postulate that slides stained with multiple markers, such as immunohistochemistry, can be used as different views to form a rich task-agnostic training signal. To this end, we introduce Madeleine, a multimodal pretraining strategy for slide representation learning. Madeleine is trained with a dual global-local cross-stain alignment objective on large cohorts of breast cancer samples (N=4,211 WSIs across five stains) and kidney transplant samples (N=12,070 WSIs across four stains). We demonstrate the quality of slide representations learned by Madeleine on various downstream evaluations, ranging from morphological and molecular classification to prognostic prediction, comprising 21 tasks using 7,299 WSIs from multiple medical centers. Code is available at https://github.com/mahmoodlab/MADELEINE.
Related papers
- Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.
Our framework introduces two key components into the common MIL model architecture.
We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - Molecular-driven Foundation Model for Oncologic Pathology [6.922502805825084]
We introduce Threads, a slide-level foundation model capable of generating universal representations of whole-slide images of any size.
Threads was pre-trained using a multimodal learning approach on a diverse cohort of 47,171 hematoxylin and eosin (H&E)-stained tissue sections.
arXiv Detail & Related papers (2025-01-28T02:35:02Z) - Unsupervised Foundation Model-Agnostic Slide-Level Representation Learning [0.0]
We propose a single modality SSL method in feature space that generates useful slide representations.
Our contrastive pretraining strategy, called COBRA, employs multiple FMs and an architecture based on Mamba-2.
COBRA exceeds performance of state-of-the-art slide encoders on four different public CPTAC cohorts on average by at least +3.8% AUC.
arXiv Detail & Related papers (2024-11-20T13:12:43Z) - Transcriptomics-guided Slide Representation Learning in Computational Pathology [9.192285155829499]
Self-supervised learning (SSL) has been successful in building patch embeddings of small histology images (e.g., 224x224 pixels)
Here, we leverage complementary information from gene expression profiles to guide slide representation learning using multimodal pre-training.
Our slide and expression (S+E) pre-training strategy, called Tangle, employs modality-specific encoders, the outputs of which are aligned via contrastive learning.
arXiv Detail & Related papers (2024-05-19T17:17:35Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Multi-modal Masked Autoencoders Learn Compositional Histopathological
Representations [3.2780506066663655]
Masked Autoencoders (MAE) is a recent SSL method suitable for digital pathology.
We introduce a multi-modal MAE (MMAE) that leverages the specific compositionality of Hematoxylin & Eosin stained WSIs.
Results show that the MMAE architecture outperforms supervised baselines and other state-of-the-art SSL techniques for an eight-class tissue phenotyping task.
arXiv Detail & Related papers (2022-09-04T05:25:31Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.