See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
- URL: http://arxiv.org/abs/2504.09809v2
- Date: Mon, 21 Apr 2025 20:52:11 GMT
- Title: See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
- Authors: Zhimin Li, Haichao Miao, Xinyuan Yan, Valerio Pascucci, Matthew Berger, Shusen Liu,
- Abstract summary: How an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem.<n>We propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table.
- Score: 13.330105502094721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs.
Related papers
- VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.
These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.
Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models [84.27290155010533]
V-MAGE is a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs.<n>We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning.
arXiv Detail & Related papers (2025-04-08T15:43:01Z) - Where do Large Vision-Language Models Look at when Answering Questions? [35.39354978511109]
Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks.<n>We extend existing heatmap visualization methods to support LVLMs for open-ended visual question answering.<n>We conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer.
arXiv Detail & Related papers (2025-03-18T04:34:43Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - MLLMs Know Where to Look: Training-free Perception of Small Visual Details with Multimodal LLMs [11.532430076027554]
We study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images.
We propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself.
arXiv Detail & Related papers (2025-02-24T18:54:40Z) - Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios [69.00444996464662]
We propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables vision-language models to reason using visual crops corresponding to relevant entities.<n>Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information [9.420776624656144]
Large Vision Language Models (LVLMs) have achieved remarkable performance in various vision-language tasks.<n>In this work, we introduce VisOnlyQA, a dataset for evaluating the geometric perception of LVLMs.<n>We reveal that LVLMs often cannot accurately perceive basic geometric information in images, while human performance is nearly perfect.
arXiv Detail & Related papers (2024-12-01T19:46:22Z) - Targeted Visual Prompting for Medical Visual Question Answering [3.600327818936722]
multimodal large language models (MLLMs) have emerged as an alternative to classical model architectures.
Simple visual errors cast doubt on the actual visual understanding abilities of these models.
This paper introduces targeted visual prompting to equip MLLMs with region-based questioning capabilities.
arXiv Detail & Related papers (2024-08-06T08:58:20Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
Our research reveals that the visual capabilities in recent multimodal LLMs still exhibit systematic shortcomings.
We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences.
We evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs.
arXiv Detail & Related papers (2024-01-11T18:58:36Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.