論文の概要: Learning Provably Robust Policies in Uncertain Parametric Environments
- arxiv url: http://arxiv.org/abs/2408.03093v1
- Date: Tue, 6 Aug 2024 10:48:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 14:17:45.632113
- Title: Learning Provably Robust Policies in Uncertain Parametric Environments
- Title(参考訳): 不確実なパラメトリック環境におけるロバストなポリシーの学習
- Authors: Yannik Schnitzer, Alessandro Abate, David Parker,
- Abstract要約: 環境全体にわたって堅牢なMDPポリシーを学習するためのデータ駆動型アプローチを提案する。
我々は、学習したポリシーを新しい、目に見えない環境で実行するための、おそらくほぼ正しい(PAC)保証を作成します。
- 参考スコア(独自算出の注目度): 57.2416302384766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven approach for learning MDP policies that are robust across stochastic environments whose transition probabilities are defined by parameters with an unknown distribution. We produce probably approximately correct (PAC) guarantees for the performance of these learned policies in a new, unseen environment over the unknown distribution. Our approach is based on finite samples of the MDP environments, for each of which we build an approximation of the model as an interval MDP, by exploring a set of generated trajectories. We use the built approximations to synthesise a single policy that performs well (meets given requirements) across the sampled environments, and furthermore bound its risk (of not meeting the given requirements) when deployed in an unseen environment. Our procedure offers a trade-off between the guaranteed performance of the learned policy and the risk of not meeting the guarantee in an unseen environment. Our approach exploits knowledge of the environment's state space and graph structure, and we show how additional knowledge of its parametric structure can be leveraged to optimize learning and to obtain tighter guarantees from less samples. We evaluate our approach on a diverse range of established benchmarks, demonstrating that we can generate highly performing and robust policies, along with guarantees that tightly quantify their performance and the associated risk.
- Abstract(参考訳): 本稿では、確率的環境において、遷移確率が未知の分布を持つパラメータによって定義される、堅牢なMDPポリシーを学習するためのデータ駆動型アプローチを提案する。
我々は、未知の分布に対する新しい、目に見えない環境において、これらの学習されたポリシーの性能について、おそらくほぼ正しい(PAC)保証を作成する。
提案手法は, MDP環境の有限サンプルに基づいて, 生成した軌道の集合を探索することにより, モデルを区間 MDP として近似する。
構築された近似を用いて、サンプル環境全体にわたって(与えられた要求を)適切に実行する単一のポリシーを合成し、さらに(与えられた要求を満たさない)リスクを目に見えない環境に配置する。
弊社の手順は、学習方針の保証された性能と、その保証を目に見えない環境で満たさないリスクとのトレードオフを提供する。
提案手法は, 環境の状態空間とグラフ構造に関する知識を利用して, 学習を最適化し, より少ないサンプルからより厳密な保証を得るために, パラメトリック構造に関するさらなる知識をどのように活用できるかを示す。
さまざまな確立されたベンチマークに対するアプローチを評価し、パフォーマンスと関連するリスクを厳格に定量化する保証とともに、高いパフォーマンスと堅牢なポリシを生成できることを示します。
関連論文リスト
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
我々は、エージェントがスパース・リワード、継続的なアクション、ゴールベースのロボット制御POMDP環境においてエクササイズするのを助けるために、事前の選好学習手法と自己修正スケジュールを導入する。
我々のエージェントは、累積報酬、相対安定性、成功率の観点から、最先端モデルよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-21T18:32:44Z) - Wasserstein Distributionally Robust Policy Evaluation and Learning for
Contextual Bandits [18.982448033389588]
オフ政治評価と学習は、与えられた政策を評価し、環境と直接対話することなくオフラインデータから最適な政策を学ぶことに関するものである。
学習と実行における異なる環境の影響を考慮するため,分散ロバスト最適化法(DRO)が開発されている。
代わりにワッサーシュタイン距離を用いた新しいDRO手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T20:21:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness
to Model Misspecification [22.241676350331968]
本研究は,不確実性パラメータを含むシミュレーション環境とその可能な値の集合を含むシナリオに焦点を当てる。
本研究の目的は,不確実性パラメータセット上での最悪の性能を最適化し,対応する実環境における性能を保証することである。
マルチジョイント・ダイナミックスと接触(MuJoCo)環境の実験により,提案手法は複数のベースライン・アプローチに比較して最悪の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T10:18:31Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
平均回帰マルコフ決定過程(AMDP)について検討し,政策最適化と政策評価の両面において理論的確証が強い新しい一階法を開発した。
政策評価と政策最適化の部分を組み合わせることで、生成的およびマルコフ的ノイズモデルの両方の下で、AMDPを解くためのサンプル複雑性結果を確立する。
論文 参考訳(メタデータ) (2022-05-11T23:02:46Z) - Uncertainty Aware System Identification with Universal Policies [45.44896435487879]
Sim2real Transferは、シミュレーションで訓練されたポリシーを、潜在的にノイズの多い現実世界環境に転送することに関心がある。
本研究では,Universal Policy Network (UPN) を用いてシミュレーション学習したタスク固有ポリシーを格納するUncertainty-aware Policy Search (UncAPS)を提案する。
次に、我々は、DRのような方法で関連するUPNポリシーを組み合わせることで、与えられた環境に対して堅牢なポリシーを構築するために、堅牢なベイズ最適化を採用する。
論文 参考訳(メタデータ) (2022-02-11T18:27:23Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z) - Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
Entropy Principle Based Framework [2.741266294612776]
逐次的意思決定問題に対処する枠組みを提案する。
我々のフレームワークは、ノイズの多いデータに対する堅牢性を備えた最適制御ポリシーの学習を特徴としている。
論文 参考訳(メタデータ) (2020-06-17T04:08:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。