論文の概要: Certifiably Robust Policies for Uncertain Parametric Environments
- arxiv url: http://arxiv.org/abs/2408.03093v2
- Date: Wed, 30 Oct 2024 11:55:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 12:44:50.397897
- Title: Certifiably Robust Policies for Uncertain Parametric Environments
- Title(参考訳): 不確実なパラメトリック環境に対するロバストな政策
- Authors: Yannik Schnitzer, Alessandro Abate, David Parker,
- Abstract要約: 本稿ではパラメータ上の未知分布を持つパラメトリックマルコフ決定プロセス(MDP)に基づくフレームワークを提案する。
パラメータによって誘導される未知のサンプル環境に対するIMDPの学習と解析を行う。
当社のアプローチは,信頼度の高い政策のパフォーマンスに厳密な拘束力をもたらすことを示す。
- 参考スコア(独自算出の注目度): 57.2416302384766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
- Abstract(参考訳): 我々は、未知の確率環境において、確実に堅牢なポリシーを作成するためのデータ駆動型アプローチを提案する。
既存のアプローチでは、マルコフ決定プロセス(IMDP)の間隔として単一環境のモデルを学び、その性能をほぼ正確に保証する堅牢なポリシーを生成することができる。
しかし、これらは不確実性の根底にある環境パラメータの影響を説明できない。
本稿ではパラメータ上の未知分布を持つパラメトリックマルコフ決定プロセス(MDP)に基づくフレームワークを提案する。
パラメータによって誘導される未知のサンプル環境に対するIMDPの学習と解析を行う。
鍵となる課題は、(1)パラメータによって誘導される複数の環境と未知の分布、(2)IMDPによって近似される未知の環境の2つの不確実性の層を組み合わせた有意義な性能保証を作ることである。
本稿では,シナリオ最適化に基づく新たな手法を提案する。この手法により,特定性能レベルを未確認環境で保証できるリスクレベルを定量化し,リスクとパフォーマンスをトレードオフする手段を提供する。
我々は、様々なベンチマークで複数のロバストなポリシー生成手法を用いて、我々のフレームワークを実装し、評価する。
当社のアプローチは,信頼度の高い政策のパフォーマンスに厳密な拘束力をもたらすことを示す。
関連論文リスト
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
我々は、エージェントがスパース・リワード、継続的なアクション、ゴールベースのロボット制御POMDP環境においてエクササイズするのを助けるために、事前の選好学習手法と自己修正スケジュールを導入する。
我々のエージェントは、累積報酬、相対安定性、成功率の観点から、最先端モデルよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-21T18:32:44Z) - Wasserstein Distributionally Robust Policy Evaluation and Learning for
Contextual Bandits [18.982448033389588]
オフ政治評価と学習は、与えられた政策を評価し、環境と直接対話することなくオフラインデータから最適な政策を学ぶことに関するものである。
学習と実行における異なる環境の影響を考慮するため,分散ロバスト最適化法(DRO)が開発されている。
代わりにワッサーシュタイン距離を用いた新しいDRO手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T20:21:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness
to Model Misspecification [22.241676350331968]
本研究は,不確実性パラメータを含むシミュレーション環境とその可能な値の集合を含むシナリオに焦点を当てる。
本研究の目的は,不確実性パラメータセット上での最悪の性能を最適化し,対応する実環境における性能を保証することである。
マルチジョイント・ダイナミックスと接触(MuJoCo)環境の実験により,提案手法は複数のベースライン・アプローチに比較して最悪の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T10:18:31Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
平均回帰マルコフ決定過程(AMDP)について検討し,政策最適化と政策評価の両面において理論的確証が強い新しい一階法を開発した。
政策評価と政策最適化の部分を組み合わせることで、生成的およびマルコフ的ノイズモデルの両方の下で、AMDPを解くためのサンプル複雑性結果を確立する。
論文 参考訳(メタデータ) (2022-05-11T23:02:46Z) - Uncertainty Aware System Identification with Universal Policies [45.44896435487879]
Sim2real Transferは、シミュレーションで訓練されたポリシーを、潜在的にノイズの多い現実世界環境に転送することに関心がある。
本研究では,Universal Policy Network (UPN) を用いてシミュレーション学習したタスク固有ポリシーを格納するUncertainty-aware Policy Search (UncAPS)を提案する。
次に、我々は、DRのような方法で関連するUPNポリシーを組み合わせることで、与えられた環境に対して堅牢なポリシーを構築するために、堅牢なベイズ最適化を採用する。
論文 参考訳(メタデータ) (2022-02-11T18:27:23Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z) - Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
Entropy Principle Based Framework [2.741266294612776]
逐次的意思決定問題に対処する枠組みを提案する。
我々のフレームワークは、ノイズの多いデータに対する堅牢性を備えた最適制御ポリシーの学習を特徴としている。
論文 参考訳(メタデータ) (2020-06-17T04:08:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。