500xCompressor: Generalized Prompt Compression for Large Language Models
- URL: http://arxiv.org/abs/2408.03094v1
- Date: Tue, 6 Aug 2024 10:51:47 GMT
- Title: 500xCompressor: Generalized Prompt Compression for Large Language Models
- Authors: Zongqian Li, Yixuan Su, Nigel Collier,
- Abstract summary: 500xCompressor is a method that compresses extensive natural language contexts into a minimum of one single special token.
It is designed to compress any text, answer various types of questions, and could be utilized by the original large language model (LLM) without requiring fine-tuning.
- Score: 32.4489985319054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt compression is crucial for enhancing inference speed, reducing costs, and improving user experience. However, current methods face challenges such as low compression ratios and potential data leakage during evaluation. To address these issues, we propose 500xCompressor, a method that compresses extensive natural language contexts into a minimum of one single special token. The 500xCompressor introduces approximately 0.3% additional parameters and achieves compression ratios ranging from 6x to 480x. It is designed to compress any text, answer various types of questions, and could be utilized by the original large language model (LLM) without requiring fine-tuning. Initially, 500xCompressor was pretrained on the Arxiv Corpus, followed by fine-tuning on the ArxivQA dataset, and subsequently evaluated on strictly unseen and classical question answering (QA) datasets. The results demonstrate that the LLM retained 62.26-72.89% of its capabilities compared to using non-compressed prompts. This study also shows that not all the compressed tokens are equally utilized and that K V values have significant advantages over embeddings in preserving information at high compression ratios. The highly compressive nature of natural language prompts, even for fine-grained complex information, suggests promising potential for future applications and further research into developing a new LLM language.
Related papers
- Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
Language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities.
We propose P$2$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies.
Experiments on benchmark datasets demonstrate that P$2$-LLM can beat SOTA classical and learned codecs.
arXiv Detail & Related papers (2024-11-19T12:15:40Z) - Style-Compress: An LLM-Based Prompt Compression Framework Considering Task-Specific Styles [49.65811277223873]
Style-Compress is a lightweight framework that adapts a smaller language model to compress prompts for a larger model on a new task without additional training.
Our approach iteratively generates and selects effective compressed prompts as task-specific demonstrations through style variation and in-context learning.
Style-Compress outperforms two baseline compression models in four tasks: original prompt reconstruction, text summarization, multi-hop QA, and CoT reasoning.
arXiv Detail & Related papers (2024-10-17T21:35:49Z) - LanguaShrink: Reducing Token Overhead with Psycholinguistics [8.123272461141815]
LanguaShrink is a prompt compression framework for large language models.
It reduces prompt length while preserving essential information.
Compared to existing prompt compression methods, LanguaShrink improves end-to-end latency by 1.43 times.
arXiv Detail & Related papers (2024-09-01T22:09:20Z) - Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models [21.025001473355996]
We formalize the problem of prompt compression for large language models (LLMs)
We present a framework to unify token-level prompt compression methods which create hard prompts for black-box models.
We show that there is a large gap between the performance of current prompt compression methods and the optimal strategy.
arXiv Detail & Related papers (2024-07-22T09:40:13Z) - Ranking LLMs by compression [13.801767671391604]
We use five large language models as priors for compression, then compare their performance on challenging natural language processing tasks.
Experimental results show that compression ratio and model performance are positively correlated, so it can be used as a general metric to evaluate large language models.
arXiv Detail & Related papers (2024-06-20T10:23:38Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
In this paper, we propose a new approach to compress the long input contexts of Transformer-based large language models (LLMs)
We use the cross-attention mechanism and a small number of learnable digest tokens to condense information from the contextual word embeddings.
Experimental results indicate that our method requires only 1/32 of the floating-point operations of the baseline during compression and improves processing speed by 68 to 112 times.
arXiv Detail & Related papers (2024-06-19T15:14:55Z) - LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression [43.048684907893104]
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency.
We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one.
Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.
arXiv Detail & Related papers (2024-03-19T17:59:56Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Extreme Model Compression for On-device Natural Language Understanding [6.941609786551173]
We show our results on a large-scale, commercial NLU system trained on a varied set of intents with huge vocabulary sizes.
Our approach outperforms a range of baselines and achieves a compression rate of 97.4% with less than 3.7% degradation in predictive performance.
arXiv Detail & Related papers (2020-11-30T21:47:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.