Evaluating the Translation Performance of Large Language Models Based on Euas-20
- URL: http://arxiv.org/abs/2408.03119v1
- Date: Tue, 6 Aug 2024 11:49:11 GMT
- Title: Evaluating the Translation Performance of Large Language Models Based on Euas-20
- Authors: Yan Huang, Wei Liu,
- Abstract summary: We evaluate the performance of large language models on translation tasks, the translation ability on different languages, and the effect of pre-training data on the translation ability of LLMs for researchers and developers.
- Score: 8.913245134585283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, with the rapid development of deep learning technology, large language models (LLMs) such as BERT and GPT have achieved breakthrough results in natural language processing tasks. Machine translation (MT), as one of the core tasks of natural language processing, has also benefited from the development of large language models and achieved a qualitative leap. Despite the significant progress in translation performance achieved by large language models, machine translation still faces many challenges. Therefore, in this paper, we construct the dataset Euas-20 to evaluate the performance of large language models on translation tasks, the translation ability on different languages, and the effect of pre-training data on the translation ability of LLMs for researchers and developers.
Related papers
- X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale [25.257770733168012]
Large language models (LLMs) have achieved remarkable success across various NLP tasks, yet their focus has predominantly been on English.
In this paper, we prioritize quality over scaling number of languages, with a focus on multilingual machine translation task.
X-ALMA is a model designed with a commitment to ensuring top-tier performance across 50 diverse languages, regardless of their resource levels.
arXiv Detail & Related papers (2024-10-04T03:17:27Z) - EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models [50.459861376459656]
EMMA-500 is a large-scale multilingual language model continue-trained on texts across 546 languages.
Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity.
arXiv Detail & Related papers (2024-09-26T14:40:45Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - Gl\'orIA - A Generative and Open Large Language Model for Portuguese [4.782288068552145]
We introduce Gl'orIA, a robust European Portuguese decoder LLM.
To pre-train Gl'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources.
Evaluation shows that Gl'orIA significantly outperforms existing open PT decoder models in language modeling.
arXiv Detail & Related papers (2024-02-20T12:36:40Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
Large language models (LLMs) have been pre-trained on multilingual corpora.
Their performance still lags behind in most languages compared to a few resource-rich languages.
arXiv Detail & Related papers (2024-02-19T15:07:32Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Investigating the Translation Performance of a Large Multilingual
Language Model: the Case of BLOOM [8.858671209228536]
We focus on BLOOM's multilingual ability by evaluating its machine translation performance across several datasets.
We study several aspects including prompt design, model sizes, cross-lingual transfer and the use of discursive context.
arXiv Detail & Related papers (2023-03-03T13:23:42Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
translate-train paradigm of transferring English datasets across multiple languages remains to be the key ingredient for training task-specific multilingual models.
We consider the task of multilingual semantic parsing and demonstrate the effectiveness and flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting.
arXiv Detail & Related papers (2022-10-13T19:34:14Z) - Building Machine Translation Systems for the Next Thousand Languages [102.24310122155073]
We describe results in three research domains: building clean, web-mined datasets for 1500+ languages, developing practical MT models for under-served languages, and studying the limitations of evaluation metrics for these languages.
We hope that our work provides useful insights to practitioners working towards building MT systems for currently understudied languages, and highlights research directions that can complement the weaknesses of massively multilingual models in data-sparse settings.
arXiv Detail & Related papers (2022-05-09T00:24:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.