論文の概要: SuperSimpleNet: Unifying Unsupervised and Supervised Learning for Fast and Reliable Surface Defect Detection
- arxiv url: http://arxiv.org/abs/2408.03143v2
- Date: Thu, 22 Aug 2024 15:38:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 18:36:08.936000
- Title: SuperSimpleNet: Unifying Unsupervised and Supervised Learning for Fast and Reliable Surface Defect Detection
- Title(参考訳): SuperSimpleNet: 高速で信頼性の高い表面欠陥検出のための教師なしおよび教師付き学習の統合
- Authors: Blaž Rolih, Matic Fučka, Danijel Skočaj,
- Abstract要約: SuperSimpleNetはSimpleNetから進化した革新的な差別モデルである。
これは前任者のトレーニング一貫性、推論時間、検出性能を大幅に向上させる。
SuperSimpleNetは、教師なし設定と教師なし設定の両方で最先端の結果を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The aim of surface defect detection is to identify and localise abnormal regions on the surfaces of captured objects, a task that's increasingly demanded across various industries. Current approaches frequently fail to fulfil the extensive demands of these industries, which encompass high performance, consistency, and fast operation, along with the capacity to leverage the entirety of the available training data. Addressing these gaps, we introduce SuperSimpleNet, an innovative discriminative model that evolved from SimpleNet. This advanced model significantly enhances its predecessor's training consistency, inference time, as well as detection performance. SuperSimpleNet operates in an unsupervised manner using only normal training images but also benefits from labelled abnormal training images when they are available. SuperSimpleNet achieves state-of-the-art results in both the supervised and the unsupervised settings, as demonstrated by experiments across four challenging benchmark datasets. Code: https://github.com/blaz-r/SuperSimpleNet .
- Abstract(参考訳): 表面欠陥検出の目的は、捕獲された物体の表面の異常領域を特定し、ローカライズすることである。
現在のアプローチでは、高パフォーマンス、一貫性、高速な運用を含む、これらの産業の広範な要求を満たすことができず、利用可能なトレーニングデータ全体を活用できないことが多い。
これらのギャップに対処するために、SimpleNetから進化した革新的な差別モデルであるSuperSimpleNetを紹介します。
この高度なモデルは、前任者のトレーニング一貫性、推論時間、および検出性能を大幅に向上させる。
SuperSimpleNetは、通常のトレーニングイメージのみを使用して教師なしの方法で動作します。
SuperSimpleNetは、4つの挑戦的なベンチマークデータセットで実証されたように、教師付き設定と教師なし設定の両方で最先端の結果を達成する。
コード:https://github.com/blaz-r/SuperSimpleNet。
関連論文リスト
- A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
この研究は、複雑な分布と高次元分布をモデル化する能力で有名な物理インフォームドリアルNVPニューラルネットワークを活用する新しいアプローチを提案する。
実験には、セルフスーパービジョンによる事前トレーニング、マルチタスク学習、スタンドアロンのセルフ教師付きトレーニングなど、さまざまな構成が含まれている。
結果は、すべての設定で大幅にパフォーマンスが向上したことを示している。
論文 参考訳(メタデータ) (2024-07-03T07:19:41Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Anomaly Detection Requires Better Representations [28.611440466398715]
異常検出は、科学と産業の中心的な課題である異常な現象を特定することを目指している。
自己教師付き表現学習の最近の進歩は、異常検出の改善を促している。
論文 参考訳(メタデータ) (2022-10-19T17:59:32Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
教師なし異常検出は、通常のデータのみをトレーニングすることで、目に見えない異常を検出するモデルを構築することを目的としている。
本稿では,これらの課題に対処するために,自己教師付き学習(AMSL)を用いた適応記憶ネットワーク(Adaptive Memory Network)を提案する。
AMSLには、一般的な正規パターンを学ぶための自己教師付き学習モジュールと、リッチな特徴表現を学ぶための適応型メモリ融合モジュールが組み込まれている。
論文 参考訳(メタデータ) (2022-01-03T03:40:21Z) - A Single-Target License Plate Detection with Attention [56.83051142257412]
ニューラルネットワークは一般にライセンスプレート検出(LPD)タスクに採用されており、パフォーマンスと精度が向上している。
LPDのような単一のオブジェクト検出タスクでは、修正された汎用オブジェクト検出は時間がかかり、複雑なシナリオや組み込みデバイスへのデプロイが困難すぎる面倒な重み付けファイルに対処できない。
論文 参考訳(メタデータ) (2021-12-12T03:00:03Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
本研究は、限られたデータ上で堅牢なGANモデルをトレーニングするための正規化手法を提案する。
正規化損失とLeCam-divergenceと呼ばれるf-divergenceの関連性を示す。
論文 参考訳(メタデータ) (2021-04-07T17:59:06Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
近年,GANに基づく半教師付きジェネレーティブ・アドバイザリアル・ネットワーク(GAN)手法が,異常検出タスクで人気を集めている。
遅延特徴空間でトレーニングデータの基盤となる構造を捕捉する新しい対角デュアルオートエンコーダネットワークを提案する。
実験の結果,MNISTおよびCIFAR10データセットおよびGTSRB停止信号データセットの最先端結果が得られた。
論文 参考訳(メタデータ) (2020-02-05T02:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。