論文の概要: Few-shot Online Anomaly Detection and Segmentation
- arxiv url: http://arxiv.org/abs/2403.18201v1
- Date: Wed, 27 Mar 2024 02:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:36:01.803745
- Title: Few-shot Online Anomaly Detection and Segmentation
- Title(参考訳): オンライン異常検出とセグメンテーション
- Authors: Shenxing Wei, Xing Wei, Zhiheng Ma, Songlin Dong, Shaochen Zhang, Yihong Gong,
- Abstract要約: 本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
- 参考スコア(独自算出の注目度): 29.693357653538474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting anomaly patterns from images is a crucial artificial intelligence technique in industrial applications. Recent research in this domain has emphasized the necessity of a large volume of training data, overlooking the practical scenario where, post-deployment of the model, unlabeled data containing both normal and abnormal samples can be utilized to enhance the model's performance. Consequently, this paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task. Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously. To tackle this issue, we propose modeling the feature distribution of normal images using a Neural Gas network, which offers the flexibility to adapt the topology structure to identify outliers in the data flow. In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation. Furthermore, we introduce an algorithm that can incrementally update parameters without the need to store previous samples. Comprehensive experimental results demonstrate that our method can achieve substantial performance under the FOADS setting, while ensuring that the time complexity remains within an acceptable range on MVTec AD and BTAD datasets.
- Abstract(参考訳): 画像から異常パターンを検出することは、産業応用において重要な人工知能技術である。
この領域における最近の研究は、モデルのデプロイ後、正常サンプルと異常サンプルの両方を含むラベルなしデータを活用して、モデルの性能を高めるという現実的なシナリオを見越して、大量のトレーニングデータの必要性を強調している。
そこで本研究では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てた。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
この問題に対処するために、我々は、トポロジ構造に適応してデータフローの外れ値を特定する柔軟性を提供するニューラルガスネットワークを用いて、通常の画像の特徴分布をモデル化することを提案する。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
さらに,従来のサンプルを格納することなくパラメータを漸進的に更新するアルゴリズムを導入する。
総合的な実験結果から,本手法は,MVTec ADおよびBTADデータセットにおいて,許容範囲内に存在する時間的複雑性を保証しながら,FOADS設定下でかなりの性能を達成できることが示されている。
関連論文リスト
- Training-Free Time-Series Anomaly Detection: Leveraging Image Foundation Models [0.0]
画像ベースでトレーニング不要な時系列異常検出(ITF-TAD)手法を提案する。
ITF-TADは、時系列データをウェーブレット変換を用いて画像に変換し、それらを単一の表現に圧縮し、画像基礎モデルを利用して異常検出を行う。
論文 参考訳(メタデータ) (2024-08-27T03:12:08Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
製造パイプラインにおける異常検出は、産業環境の複雑さと変動性によって強化され、依然として重要な課題である。
本稿では,スマート製造パイプラインに適した解釈可能な画像ベース異常検出システムAssemAIを紹介する。
論文 参考訳(メタデータ) (2024-08-05T01:50:09Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - CUT: A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework [11.609545429511595]
我々は、制御可能、ユニバーサル、およびトレーニング不要な視覚異常生成フレームワークであるCUTを提案する。
不可視データと新規な異常型の両方にわたって,制御可能かつ現実的な異常生成を実現する。
生成した異常サンプルを用いてVLADモデルをトレーニングすることにより、複数のベンチマーク異常検出タスクで最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-03T07:58:09Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。