論文の概要: Efficient NeRF Optimization -- Not All Samples Remain Equally Hard
- arxiv url: http://arxiv.org/abs/2408.03193v1
- Date: Tue, 6 Aug 2024 13:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:58:07.409865
- Title: Efficient NeRF Optimization -- Not All Samples Remain Equally Hard
- Title(参考訳): 効率的なNeRF最適化 - すべてのサンプルが等しく硬く残っていない
- Authors: Juuso Korhonen, Goutham Rangu, Hamed R. Tavakoli, Juho Kannala,
- Abstract要約: ニューラルレイディアンスフィールド(NeRF)の効率的なトレーニングのためのオンラインハードサンプルマイニングの応用を提案する。
NeRFモデルは、多くの3D再構成およびレンダリングタスクに対して最先端の品質を生み出すが、かなりの計算資源を必要とする。
- 参考スコア(独自算出の注目度): 9.404889815088161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an application of online hard sample mining for efficient training of Neural Radiance Fields (NeRF). NeRF models produce state-of-the-art quality for many 3D reconstruction and rendering tasks but require substantial computational resources. The encoding of the scene information within the NeRF network parameters necessitates stochastic sampling. We observe that during the training, a major part of the compute time and memory usage is spent on processing already learnt samples, which no longer affect the model update significantly. We identify the backward pass on the stochastic samples as the computational bottleneck during the optimization. We thus perform the first forward pass in inference mode as a relatively low-cost search for hard samples. This is followed by building the computational graph and updating the NeRF network parameters using only the hard samples. To demonstrate the effectiveness of the proposed approach, we apply our method to Instant-NGP, resulting in significant improvements of the view-synthesis quality over the baseline (1 dB improvement on average per training time, or 2x speedup to reach the same PSNR level) along with approx. 40% memory savings coming from using only the hard samples to build the computational graph. As our method only interfaces with the network module, we expect it to be widely applicable.
- Abstract(参考訳): ニューラルレージアンスフィールド(NeRF)の効率的なトレーニングのためのオンラインハードサンプルマイニングの応用を提案する。
NeRFモデルは、多くの3D再構成およびレンダリングタスクに対して最先端の品質を生み出すが、かなりの計算資源を必要とする。
NeRFネットワークパラメータ内のシーン情報の符号化は確率的サンプリングを必要とする。
トレーニング中、計算時間とメモリ使用量の大部分は、既に学習済みのサンプルの処理に費やされている。
確率的サンプルの後方通過を最適化時の計算ボトルネックとして同定する。
そこで我々は,ハードサンプルの比較的低コスト検索として,最初のフォワードパス推論モードを実行する。
その後、計算グラフを構築し、ハードサンプルのみを使用してNeRFネットワークパラメータを更新する。
提案手法の有効性を示すため,本手法をInstant-NGPに適用し,ベースラインに対する視線合成品質(トレーニング時間あたりの平均1dB改善,PSNRの2倍高速化)を近似とともに向上させた。
ハードサンプルのみを使用して計算グラフを構築することで、40%のメモリ節約が可能になった。
提案手法はネットワークモジュールとのインタフェースのみであるため,広く適用できると期待している。
関連論文リスト
- SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks [4.262342157729123]
SGM-PINNは物理情報ニューラルネットワーク(PINN)のトレーニング効率を向上させるグラフベースの重要度サンプリングフレームワークである
提案手法の利点を実証し,従来の最先端サンプリング手法と比較して3倍の収束性を実現した。
論文 参考訳(メタデータ) (2024-07-10T04:31:50Z) - ProNeRF: Learning Efficient Projection-Aware Ray Sampling for
Fine-Grained Implicit Neural Radiance Fields [27.008124938806944]
メモリフットプリント(NeRFに似ている)、スピード(HyperReelより速い)、品質(K-Planesより速い)の最適なトレードオフを提供するProNeRFを提案する。
我々のProNeRFは最先端の計測値であり、最も優れたサンプルベース手法であるHyperReelよりも15-23倍高速で、PSNRは0.65dB高く、PSNRは0.95dB高い。
論文 参考訳(メタデータ) (2023-12-13T13:37:32Z) - RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time
Path Tracing [1.534667887016089]
モンテカルロ経路追跡は、現実的な画像合成の強力な手法であるが、低いサンプル数での高レベルのノイズに悩まされている。
本稿では,サンプリング重要度ネットワーク,遅延空間エンコーダネットワーク,デノイザネットワークをエンドツーエンドでトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-05T12:39:27Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
グラフニューラルネットワーク(GNN)のミニバッチトレーニングには、多くの計算とデータ移動が必要である。
我々は,分散マルチGPU環境において,近傍サンプリングを用いたミニバッチトレーニングを行うことを支持する。
本稿では,これらのボトルネックを緩和する一連の改良点について述べる。
また,サンプリングによる推論を支援する実験分析を行い,試験精度が実質的に損なわれていないことを示す。
論文 参考訳(メタデータ) (2021-10-16T02:41:35Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Sample and Computation Redistribution for Efficient Face Detection [137.19388513633484]
トレーニングデータサンプリングと計算分布戦略は、効率的で正確な顔検出の鍵です。
scrfdf34は、最高の競合製品であるTinaFaceを3.86%(ハードセットでのAP)で上回り、GPU上でVGA解像度画像でmph3$times$より高速です。
論文 参考訳(メタデータ) (2021-05-10T23:51:14Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。