論文の概要: SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2407.07358v1
- Date: Wed, 10 Jul 2024 04:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:51:32.154227
- Title: SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks
- Title(参考訳): SGM-PINN:物理インフォームドニューラルネットワークの高速トレーニングのためのグラフィカルモデルサンプリング
- Authors: John Anticev, Ali Aghdaei, Wuxinlin Cheng, Zhuo Feng,
- Abstract要約: SGM-PINNは物理情報ニューラルネットワーク(PINN)のトレーニング効率を向上させるグラフベースの重要度サンプリングフレームワークである
提案手法の利点を実証し,従来の最先端サンプリング手法と比較して3倍の収束性を実現した。
- 参考スコア(独自算出の注目度): 4.262342157729123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: SGM-PINN is a graph-based importance sampling framework to improve the training efficacy of Physics-Informed Neural Networks (PINNs) on parameterized problems. By applying a graph decomposition scheme to an undirected Probabilistic Graphical Model (PGM) built from the training dataset, our method generates node clusters encoding conditional dependence between training samples. Biasing sampling towards more important clusters allows smaller mini-batches and training datasets, improving training speed and accuracy. We additionally fuse an efficient robustness metric with residual losses to determine regions requiring additional sampling. Experiments demonstrate the advantages of the proposed framework, achieving $3\times$ faster convergence compared to prior state-of-the-art sampling methods.
- Abstract(参考訳): SGM-PINNは、パラメータ化問題に対する物理情報ニューラルネットワーク(PINN)のトレーニング効率を改善するためのグラフベースの重要度サンプリングフレームワークである。
トレーニングデータセットから構築した非指向確率グラフモデル(PGM)にグラフ分解スキームを適用することにより、トレーニングサンプル間の条件依存を符号化したノードクラスタを生成する。
より重要なクラスタへのサンプリングにより、より小さなミニバッチとトレーニングデータセットが可能になり、トレーニング速度と精度が向上する。
さらに,余剰損失を伴って効率的なロバストネス測定を融合し,追加サンプリングを必要とする領域を決定する。
提案手法の利点を実証し,従来の最先端サンプリング手法と比較して3倍の収束性を実現した。
関連論文リスト
- YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training [9.02251811867533]
YOSO(You-Only-Sample-Once)は、予測精度を維持しながら効率的なトレーニングを実現するアルゴリズムである。
YOSOは、正規直交基底計算のような従来の圧縮センシング(CS)法で高価な計算を避けるだけでなく、高い確率精度の保持も保証している。
論文 参考訳(メタデータ) (2024-11-08T16:47:51Z) - Efficient NeRF Optimization -- Not All Samples Remain Equally Hard [9.404889815088161]
ニューラルレイディアンスフィールド(NeRF)の効率的なトレーニングのためのオンラインハードサンプルマイニングの応用を提案する。
NeRFモデルは、多くの3D再構成およびレンダリングタスクに対して最先端の品質を生み出すが、かなりの計算資源を必要とする。
論文 参考訳(メタデータ) (2024-08-06T13:49:01Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Fine Structure-Aware Sampling: A New Sampling Training Scheme for Pixel-Aligned Implicit Models in Single-View Human Reconstruction [98.30014795224432]
本研究では,単一視点の人物再構成のための暗黙的画素アライメントモデルをトレーニングするために,FSS(Final Structured-Aware Sampling)を導入する。
FSSは表面の厚さと複雑さに積極的に適応する。
また、画素アライメント型暗黙的モデルのためのメッシュ厚み損失信号を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:26:46Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
グラフ畳み込みネットワーク(GCN)の訓練を高速化するために, ばらつきを低減したサンプリングアルゴリズムが提案されている。
これらのサンプリングアルゴリズムは、グラフ注意ネットワーク(GAT)のような固定重みよりも学習重量を含む、より一般的なグラフニューラルネットワーク(GNN)には適用できない。
論文 参考訳(メタデータ) (2020-06-10T12:48:37Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。