論文の概要: Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors
- arxiv url: http://arxiv.org/abs/2408.03200v2
- Date: Wed, 7 Aug 2024 02:14:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:15:09.177062
- Title: Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors
- Title(参考訳): ナチュラル・ヒューマン・ドライビング・プライオリティを用いた対人安全批判シナリオ生成
- Authors: Kunkun Hao, Yonggang Luo, Wen Cui, Yuqiao Bai, Jucheng Yang, Songyang Yan, Yuxi Pan, Zijiang Yang,
- Abstract要約: 本研究では,自然主義的人間運転先行と強化学習技術を用いた自然逆シナリオ生成ソリューションを提案する。
本研究は,本モデルにより,自然性と逆性の両方をカバーする現実的な安全クリティカルなテストシナリオを生成できることを示す。
- 参考スコア(独自算出の注目度): 2.773055342671194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the decision-making system is indispensable in developing autonomous vehicles, while realistic and challenging safety-critical test scenarios play a crucial role. Obtaining these scenarios is non-trivial, thanks to the long-tailed distribution, sparsity, and rarity in real-world data sets. To tackle this problem, in this paper, we introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques. By doing this, we can obtain large-scale test scenarios that are both diverse and realistic. Specifically, we build a simulation environment that mimics natural traffic interaction scenarios. Informed by this environment, we implement a two-stage procedure. The first stage incorporates conventional rule-based models, e.g., IDM~(Intelligent Driver Model) and MOBIL~(Minimizing Overall Braking Induced by Lane changes) model, to coarsely and discretely capture and calibrate key control parameters from the real-world dataset. Next, we leverage GAIL~(Generative Adversarial Imitation Learning) to represent driver behaviors continuously. The derived GAIL can be further used to design a PPO~(Proximal Policy Optimization)-based actor-critic network framework to fine-tune the reward function, and then optimizes our natural adversarial scenario generation solution. Extensive experiments have been conducted in the NGSIM dataset including the trajectory of 3,000 vehicles. Essential traffic parameters were measured in comparison with the baseline model, e.g., the collision rate, accelerations, steering, and the number of lane changes. Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality, which can be a cornerstone for the development of autonomous vehicles.
- Abstract(参考訳): 自動運転車の開発には意思決定システムの評価が不可欠であり、現実的で挑戦的な安全クリティカルなテストシナリオが重要な役割を果たす。
これらのシナリオの達成は、現実世界のデータセットにおける長い尾の分布、空間性、希少性のおかげで、簡単ではない。
この問題に対処するために,本論文では,自然主義的人間運転先行と強化学習技術を用いた自然な逆シナリオ生成ソリューションを提案する。
これを行うことで、多様かつ現実的な大規模なテストシナリオが得られます。
具体的には、自然の交通相互作用のシナリオを模倣するシミュレーション環境を構築する。
この環境により、我々は2段階の手順を実装した。
第1段階では、従来のルールベースのモデル、例えば、IMM~(Intelligent Driver Model)、MOBIL~(Lane Changeによって誘導される総合ブレーキの最小化)モデルを導入し、現実世界のデータセットからキー制御パラメータを粗く、離散的にキャプチャし、校正する。
次に、GAIL~(Generative Adversarial Imitation Learning)を利用して、ドライバーの動作を継続的に表現する。
GAILは、PPO~(Proximal Policy Optimization)ベースのアクタークリティカルネットワークフレームワークを設計し、報酬関数を微調整し、自然なシナリオ生成ソリューションを最適化する。
NGSIMデータセットでは3,000台の車両の軌道を含む大規模な実験が行われた。
交通パラメータは, ベースラインモデル, 衝突速度, 加速度, ステアリング, レーン数と比較した。
提案モデルにより, 自然性と逆性の両方をカバーする現実的な安全クリティカルなテストシナリオが生成できることが, 自動運転車開発の基礎となることを実証した。
関連論文リスト
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
自然トラフィックデータからドライバの好みを推定するためにモデルをどのように反転させることができるかを示す。
我々のアプローチの際立った利点は、計算負担を大幅に削減することである。
論文 参考訳(メタデータ) (2021-05-05T01:20:03Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。