論文の概要: Safety-Critical Traffic Simulation with Guided Latent Diffusion Model
- arxiv url: http://arxiv.org/abs/2505.00515v1
- Date: Thu, 01 May 2025 13:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.312911
- Title: Safety-Critical Traffic Simulation with Guided Latent Diffusion Model
- Title(参考訳): ガイド付き遅延拡散モデルによる安全臨界交通シミュレーション
- Authors: Mingxing Peng, Ruoyu Yao, Xusen Guo, Yuting Xie, Xianda Chen, Jun Ma,
- Abstract要約: 安全クリティカルな交通シミュレーションは、自動運転システムを評価する上で重要な役割を果たす。
本稿では,物理的に現実的で逆向きなシナリオを生成可能なガイド付き潜時拡散モデル(LDM)を提案する。
我々の研究は、現実的な安全クリティカルなシナリオシミュレーションのための効果的なツールを提供し、自律運転システムのより堅牢な評価の道を開く。
- 参考スコア(独自算出の注目度): 8.011306318131458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety-critical traffic simulation plays a crucial role in evaluating autonomous driving systems under rare and challenging scenarios. However, existing approaches often generate unrealistic scenarios due to insufficient consideration of physical plausibility and suffer from low generation efficiency. To address these limitations, we propose a guided latent diffusion model (LDM) capable of generating physically realistic and adversarial safety-critical traffic scenarios. Specifically, our model employs a graph-based variational autoencoder (VAE) to learn a compact latent space that captures complex multi-agent interactions while improving computational efficiency. Within this latent space, the diffusion model performs the denoising process to produce realistic trajectories. To enable controllable and adversarial scenario generation, we introduce novel guidance objectives that drive the diffusion process toward producing adversarial and behaviorally realistic driving behaviors. Furthermore, we develop a sample selection module based on physical feasibility checks to further enhance the physical plausibility of the generated scenarios. Extensive experiments on the nuScenes dataset demonstrate that our method achieves superior adversarial effectiveness and generation efficiency compared to existing baselines while maintaining a high level of realism. Our work provides an effective tool for realistic safety-critical scenario simulation, paving the way for more robust evaluation of autonomous driving systems.
- Abstract(参考訳): 安全クリティカルな交通シミュレーションは、稀で困難なシナリオ下で自律運転システムを評価する上で重要な役割を果たす。
しかし、既存のアプローチは、物理的妥当性の考慮が不十分で、生成効率が低いため、しばしば非現実的なシナリオを生成する。
これらの制約に対処するために、物理的に現実的で、対向的な安全クリティカルな交通シナリオを生成することができるガイド付き潜在拡散モデル(LDM)を提案する。
具体的には、グラフベースの変分オートエンコーダ(VAE)を用いて、複雑なマルチエージェント相互作用を捕捉し、計算効率を向上させながら、コンパクトな潜在空間を学習する。
この潜伏空間内では、拡散モデルは現実的な軌跡を生成するためにデノナイジング過程を実行する。
制御可能なシナリオ生成を実現するために,現実的な運転行動を生成するための拡散過程を駆動する新たな誘導目標を導入する。
さらに,本研究では,シナリオの物理的妥当性をさらに高めるために,物理的実現可能性チェックに基づくサンプル選択モジュールを開発する。
nuScenesデータセットの大規模な実験により,本手法は既存のベースラインと比較して,高いレベルのリアリズムを維持しつつ,対向効率と生成効率を向上することを示した。
我々の研究は、現実的な安全クリティカルなシナリオシミュレーションのための効果的なツールを提供し、自律運転システムのより堅牢な評価の道を開く。
関連論文リスト
- Safety-Critical Traffic Simulation with Adversarial Transfer of Driving Intentions [11.633051537198687]
IntSimは、周囲の俳優の運転意図を運動計画から明確に切り離す戦略である。
IntSimは、現実的な安全クリティカルなシナリオをシミュレートして最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-07T06:59:27Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
この研究は、長期水平予測、エラー蓄積、およびsim-to-real転送の課題に対処することで、モデルに基づく強化学習を前進させる。
スケーラブルでロバストなフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Causal Composition Diffusion Model for Closed-loop Traffic Generation [31.52951126032351]
本稿では,これらの課題に対処するための構造誘導拡散フレームワークであるCausal Compositional Diffusion Model (CCDiff)を紹介する。
まず、制約付き最適化問題として、制御可能で現実的な閉ループシミュレーションの学習を定式化する。
そして、CCDiffは拡散過程に直接因果構造を自動同定し注入することにより、現実主義に固執しながら制御性を最大化する。
論文 参考訳(メタデータ) (2024-12-23T19:20:29Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
本稿では,自律走行のための新しい軌道予測モデルを提案する。
本モデルは,不確実性推定と複雑なエージェント相互作用を組み込むことにより,軌道予測の精度と信頼性を向上させる。
提案モデルでは,実環境における自律走行システムへの応用の可能性を示す。
論文 参考訳(メタデータ) (2024-11-25T15:03:44Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
本稿では,交通シナリオを生成する拡散に基づくDJINNを提案する。
我々のアプローチは、過去、現在、未来からのフレキシブルな状態観察のセットに基づいて、全てのエージェントの軌跡を共同で拡散させる。
本稿では,DJINNが様々な条件分布からの直接的テスト時間サンプリングを柔軟に行う方法を示す。
論文 参考訳(メタデータ) (2023-09-21T22:10:20Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
Iso-DreamはDream-to-Controlフレームワークを2つの側面で改善する。
まず、逆動力学を最適化することにより、世界モデルに制御可能で制御不能な情報源を学習させることを奨励する。
第2に、エージェントの挙動を世界モデルの切り離された潜在的想像力に最適化する。
論文 参考訳(メタデータ) (2022-05-27T08:07:39Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。