論文の概要: Masked Random Noise for Communication Efficient Federated Learning
- arxiv url: http://arxiv.org/abs/2408.03220v2
- Date: Mon, 30 Sep 2024 14:20:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 12:44:50.328554
- Title: Masked Random Noise for Communication Efficient Federated Learning
- Title(参考訳): コミュニケーション効率の良いフェデレーション学習のためのマスキングランダムノイズ
- Authors: Shiwei Li, Yingyi Cheng, Haozhao Wang, Xing Tang, Shijie Xu, Weihong Luo, Yuhua Li, Dugang Liu, Xiuqiang He, Ruixuan Li,
- Abstract要約: フェデレーション学習は、データプライバシを効果的に保護する、有望な分散トレーニングである。
本稿では,新たな視点からコミュニケーション効率を向上させることを目的とする。
- 参考スコア(独自算出の注目度): 20.545259756479993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a promising distributed training paradigm that effectively safeguards data privacy. However, it may involve significant communication costs, which hinders training efficiency. In this paper, we aim to enhance communication efficiency from a new perspective. Specifically, we request the distributed clients to find optimal model updates relative to global model parameters within predefined random noise. For this purpose, we propose Federated Masked Random Noise (FedMRN), a novel framework that enables clients to learn a 1-bit mask for each model parameter and apply masked random noise (i.e., the Hadamard product of random noise and masks) to represent model updates. To make FedMRN feasible, we propose an advanced mask training strategy, called progressive stochastic masking (PSM). After local training, each client only need to transmit local masks and a random seed to the server. Additionally, we provide theoretical guarantees for the convergence of FedMRN under both strongly convex and non-convex assumptions. Extensive experiments are conducted on four popular datasets. The results show that FedMRN exhibits superior convergence speed and test accuracy compared to relevant baselines, while attaining a similar level of accuracy as FedAvg.
- Abstract(参考訳): フェデレーション学習は、データプライバシを効果的に保護する、有望な分散トレーニングパラダイムである。
しかし、これは訓練の効率を損なう、かなりの通信コストを伴う可能性がある。
本稿では,新たな視点からコミュニケーション効率を向上させることを目的とする。
具体的には、事前定義されたランダムノイズの中で、グローバルモデルパラメータに対して最適なモデル更新を見つけるように、分散クライアントに要求する。
本研究では,モデルパラメータ毎に1ビットのマスクを学習し,ランダムノイズとマスクのアダマール積を用いてモデル更新を表現する新しいフレームワークであるFederated Masked Random Noise (FedMRN)を提案する。
プログレッシブ・確率マスキング(PSM)と呼ばれる高度なマスクトレーニング戦略を提案する。
ローカルトレーニングの後、各クライアントはローカルマスクとランダムシードをサーバに送信するだけでよい。
さらに、強い凸と非凸の両方の仮定の下で、FedMRNの収束に関する理論的保証を提供する。
大規模な実験は4つの一般的なデータセットで行われている。
その結果,FedMRNは,FedAvgと同等の精度で,関連するベースラインよりもコンバージェンス速度とテスト精度が優れていることがわかった。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Noise-Robust and Resource-Efficient ADMM-based Federated Learning [6.957420925496431]
フェデレートラーニング(FL)は、クライアントサーバ通信を活用して、分散データ上でグローバルモデルをトレーニングする。
本稿では,通信負荷を低減しつつ,通信騒音に対するロバスト性を高める新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-20T12:32:22Z) - Adaptive Differential Privacy in Federated Learning: A Priority-Based
Approach [0.0]
フェデレートラーニング(FL)は、ローカルデータセットに直接アクセスせずにグローバルモデルを開発する。
DPはパラメータに一定のノイズを加えることで、プライバシーを保証するフレームワークを提供する。
本稿では,特徴量の相対的重要度に基づいて入射雑音の値を決定するFLの適応雑音付加法を提案する。
論文 参考訳(メタデータ) (2024-01-04T03:01:15Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated Learning(FL)は、複数のユーザがグローバル機械学習(ML)モデルを共同でトレーニングできるフレームワークである。
このような分散フレームワークの重要な動機の1つは、ユーザにプライバシ保証を提供することである。
本稿では,DPを提供するのに必要なランダム性を導入するために,混合幾何分布を用いた新しい量子化法を提案する。
論文 参考訳(メタデータ) (2023-12-10T04:44:53Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - FedPerm: Private and Robust Federated Learning by Parameter Permutation [2.406359246841227]
Federated Learning(FL)は、相互に信頼できないクライアントが共通の機械学習モデルを共同でトレーニングできるようにする分散学習パラダイムである。
クライアントデータのプライバシはFLで最重要である。同時に、モデルが敵のクライアントからの攻撃から保護されなければならない。
我々は、データプライバシを増幅する新しいモデル内パラメータシャッフル技術と、クライアントのモデル更新の暗号化集約を可能にするPrivate Information Retrieval(PIR)ベースの技術を組み合わせることで、これらの問題に対処する新しいFLアルゴリズムであるFedPermを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:40:28Z) - Federated Learning with Sparsified Model Perturbation: Improving
Accuracy under Client-Level Differential Privacy [27.243322019117144]
フェデレートラーニング(FL)は、分散クライアントが共同で共有統計モデルを学ぶことを可能にする。
トレーニングデータに関するセンシティブな情報は、FLで共有されたモデル更新から推測することができる。
差別化プライバシ(DP)は、これらの攻撃を防御するための最先端技術である。
本稿では,モデル精度を維持しつつ,クライアントレベルのDP保証を実現する新しいFLスキームであるFed-SMPを開発した。
論文 参考訳(メタデータ) (2022-02-15T04:05:42Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。