Making Long-Context Language Models Better Multi-Hop Reasoners
- URL: http://arxiv.org/abs/2408.03246v1
- Date: Tue, 6 Aug 2024 15:06:40 GMT
- Title: Making Long-Context Language Models Better Multi-Hop Reasoners
- Authors: Yanyang Li, Shuo Liang, Michael R. Lyu, Liwei Wang,
- Abstract summary: We introduce Reasoning with Attributions, a novel approach that prompts LMs to supply attributions for each assertion during their reasoning.
We validate our approach through experiments on three multi-hop datasets, employing both proprietary and open-source models.
Our model achieves competitive performance on multi-hop reasoning benchmarks, closely paralleling proprietary LMs such as ChatGPT and Claude-instant.
- Score: 42.09676404515287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in long-context modeling have enhanced language models (LMs) for complex tasks across multiple NLP applications. Despite this progress, we find that these models struggle with multi-hop reasoning and exhibit decreased performance in the presence of noisy contexts. In this paper, we introduce Reasoning with Attributions, a novel approach that prompts LMs to supply attributions for each assertion during their reasoning. We validate our approach through experiments on three multi-hop datasets, employing both proprietary and open-source models, and demonstrate its efficacy and resilience. Furthermore, we explore methods to augment reasoning capabilities via fine-tuning and offer an attribution-annotated dataset and a specialized training strategy. Our fine-tuned model achieves competitive performance on multi-hop reasoning benchmarks, closely paralleling proprietary LMs such as ChatGPT and Claude-instant.
Related papers
- Mentor-KD: Making Small Language Models Better Multi-step Reasoners [15.159415340059388]
We propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs.
We exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations.
We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
arXiv Detail & Related papers (2024-10-11T17:53:27Z) - MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate [24.92465108034783]
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually.
The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents.
We evaluate the behavior of a network of models collaborating through debate under the influence of an adversary.
arXiv Detail & Related papers (2024-06-20T20:09:37Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
We present a pipeline (MQArgEng) to evaluate the effect of introducing computational argumentation semantics on the performance of Large Language Models (LLMs)
Exploratory results indicate that MQArgEng provides a moderate performance gain in most of the examined topical categories and, as such, show promise and warrant further research.
arXiv Detail & Related papers (2024-05-16T22:09:31Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.