Mentor-KD: Making Small Language Models Better Multi-step Reasoners
- URL: http://arxiv.org/abs/2410.09037v1
- Date: Fri, 11 Oct 2024 17:53:27 GMT
- Title: Mentor-KD: Making Small Language Models Better Multi-step Reasoners
- Authors: Hojae Lee, Junho Kim, SangKeun Lee,
- Abstract summary: We propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs.
We exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations.
We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
- Score: 15.159415340059388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have displayed remarkable performances across various complex tasks by leveraging Chain-of-Thought (CoT) prompting. Recently, studies have proposed a Knowledge Distillation (KD) approach, reasoning distillation, which transfers such reasoning ability of LLMs through fine-tuning language models of multi-step rationales generated by LLM teachers. However, they have inadequately considered two challenges regarding insufficient distillation sets from the LLM teacher model, in terms of 1) data quality and 2) soft label provision. In this paper, we propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs while addressing the aforementioned challenges. Specifically, we exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations and provide soft labels for the student model during reasoning distillation. We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs [47.35598271306371]
Large Language Models (LLMs) have exhibited impressive capabilities in various tasks, yet their vast parameter sizes restrict their applicability in resource-constrained settings.
Knowledge distillation (KD) offers a viable solution by transferring expertise from large teacher models to compact student models.
We present PLaD, a novel preference-based LLM distillation framework.
arXiv Detail & Related papers (2024-06-05T03:08:25Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
Instruction tuning aims to align large language models with open-domain instructions and human-preferred responses.
We introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR) to select instructions that are difficult for a student LLM to follow.
To balance the student's capabilities, task distributions in training sets are adjusted with responses automatically refined according to their corresponding tasks.
arXiv Detail & Related papers (2024-05-22T08:38:26Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences.
Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred.
We propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance.
arXiv Detail & Related papers (2024-02-20T15:47:59Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models [20.28989820878285]
Large language models (LLMs) have achieved remarkable advancements in natural language processing.
The massive scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained environments.
arXiv Detail & Related papers (2023-11-15T18:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.