論文の概要: Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
- arxiv url: http://arxiv.org/abs/2408.03274v1
- Date: Tue, 6 Aug 2024 16:17:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:38:12.018527
- Title: Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
- Title(参考訳): 圧縮と比較:MLモデル圧縮実験における効率性と挙動の相互評価
- Authors: Angie Boggust, Venkatesh Sivaraman, Yannick Assogba, Donghao Ren, Dominik Moritz, Fred Hohman,
- Abstract要約: デバイス上で機械学習モデルをデプロイするには、圧縮アルゴリズムを使用して、高品質なアウトプットを維持しながらモデルを縮小および高速化する。
既存の圧縮ツールは比較を不十分にサポートし、退屈な結果となり、時には不完全な解析が非結合ツールに分散する。
実世界の比較を支援するために,Compress and Compareという対話型ビジュアルシステムを開発した。
コンプレックスとコンプレックスは、圧縮されたモデル間の前兆関係を可視化し、モデルの予測、重み、アクティベーションを比較することで圧縮誘起の挙動変化を明らかにすることで、圧縮戦略を約束する。
- 参考スコア(独自算出の注目度): 20.360936113552597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools. To support real-world comparative workflows, we develop an interactive visual system called Compress and Compare. Within a single interface, Compress and Compare surfaces promising compression strategies by visualizing provenance relationships between compressed models and reveals compression-induced behavior changes by comparing models' predictions, weights, and activations. We demonstrate how Compress and Compare supports common compression analysis tasks through two case studies, debugging failed compression on generative language models and identifying compression artifacts in image classification models. We further evaluate Compress and Compare in a user study with eight compression experts, illustrating its potential to provide structure to compression workflows, help practitioners build intuition about compression, and encourage thorough analysis of compression's effect on model behavior. Through these evaluations, we identify compression-specific challenges that future visual analytics tools should consider and Compress and Compare visualizations that may generalize to broader model comparison tasks.
- Abstract(参考訳): デバイス上で機械学習モデルをデプロイするには、圧縮アルゴリズムを使用して、高品質なアウトプットを維持しながらモデルを縮小および高速化する。
実際の圧縮の重要な側面は、多くの圧縮実験の追跡、モデルの振る舞いの微妙な変化の特定、複雑な精度と効率のトレードオフの交渉など、モデルの比較である。
しかし、既存の圧縮ツールは比較を不十分にサポートし、退屈な結果となり、時には不完全な解析が不整合ツールに分散する。
実世界の比較ワークフローを支援するために,Compress と Compare という対話型ビジュアルシステムを開発した。
コンプレックスとコンプレックスは、圧縮されたモデル間の前兆関係を可視化し、モデルの予測、重み、アクティベーションを比較することで圧縮誘起の挙動変化を明らかにすることで、圧縮戦略を約束する。
本稿では,Compress と Compare が共通圧縮解析タスクをどのようにサポートするかを示す。2つのケーススタディ,生成言語モデルにおける圧縮のデバッギング,画像分類モデルにおける圧縮アーティファクトの識別などである。
さらに,8つの圧縮専門家によるユーザスタディにおいて,圧縮と比較について評価し,圧縮ワークフローの構造を提供する可能性を示し,圧縮に関する直観の構築を支援し,圧縮がモデル行動に与える影響を徹底的に分析する。
これらの評価を通じて、将来のビジュアル分析ツールが考慮すべき圧縮固有の課題と、より広範なモデル比較タスクに一般化する可能性のある圧縮と比較の可視化を識別する。
関連論文リスト
- Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
大規模言語モデル(LLM)は、より高速な推論、メモリフットプリントの縮小、ローカルデプロイメントを可能にする。
2つの標準的な圧縮手法はプルーニングと量子化であり、前者はモデル層における冗長な接続を排除し、後者はより少ないビットでモデルパラメータを表現する。
LLM圧縮に関する既存の研究は、主にパープレキシティやダウンストリームタスクの精度といった一般的な指標のパフォーマンスに焦点を当てている。
パラメトリックな知識を測定するような、よりきめ細かいメトリクスは、いまだにかなり過小評価されている。
論文 参考訳(メタデータ) (2023-12-01T22:27:12Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
フレキシブルネットワーク展開のための超高速自動モデル圧縮フレームワークSeerNetを提案する。
本手法は,探索コストを大幅に削減した競合精度・複雑度トレードオフを実現する。
論文 参考訳(メタデータ) (2023-04-13T10:52:49Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - Compressing Transformer-based self-supervised models for speech
processing [45.254624876127124]
本稿では,重量刈り,頭部刈り,低ランク近似,知識蒸留など,一般的な圧縮技術について検討する。
ウォールクロック時間,パラメータ数,乗算演算数など,さまざまな圧縮速度でトレードオフを報告する。
この結果から,最近の手法とのトレードオフを改善する圧縮手法の簡単な組み合わせが導かれる。
論文 参考訳(メタデータ) (2022-11-17T23:53:52Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - Revisit Visual Representation in Analytics Taxonomy: A Compression
Perspective [69.99087941471882]
圧縮された視覚表現を用いて複数のマシンビジョン分析タスクをサポートする問題について検討する。
異なるタスク間の本質的な転送性を利用することで、低ビットレートでコンパクトで表現力のある表現を構築できる。
表現にコンパクトさを課すために,コードブックベースのハイパープライヤを提案する。
論文 参考訳(メタデータ) (2021-06-16T01:44:32Z) - Saliency Driven Perceptual Image Compression [6.201592931432016]
画像圧縮技術の性能評価にはMS-SSIMやPSNRなどの評価指標が不十分であることを示す。
画像圧縮に特有な知覚的類似性データに基づいて学習する新しい指標を提案する。
このモデルは視覚的に優れた画像を生成するだけでなく、その後のコンピュータビジョンタスクに優れた性能を与える。
論文 参考訳(メタデータ) (2020-02-12T13:43:17Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。