論文の概要: DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
- arxiv url: http://arxiv.org/abs/2408.03291v1
- Date: Tue, 6 Aug 2024 16:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:38:11.999163
- Title: DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
- Title(参考訳): DopQ-ViT:視覚変換器の分散親和性と外付け性を考慮したポストトレーニング量子化を目指して
- Authors: Lianwei Yang, Haisong Gong,
- Abstract要約: 本稿では,視覚変換器のための分散親和性・外乱性を考慮したポストトレーニング量子化手法を提案する。
DopQ-ViTは、現在の量子化器の非効率性を分析し、TanQと呼ばれる分布に優しいタン量子化器を導入する。
DopQ-ViTは広範な検証を行っており、量子化モデルの大幅な性能向上を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks; however, the high computational cost and significant latency issues have hinder widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Moreover, when reparameterizing post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to Search for the Optimal Scaling Factor, denoted as SOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has undergone extensive validation and demonstrates significant performance improvements in quantization models, particularly in low-bit settings.
- Abstract(参考訳): ビジョントランスフォーマー(ViT)は、ビジョンタスクのパフォーマンスに大きな注目を集めているが、高い計算コストと重大なレイテンシの問題が広く採用を妨げている。
モデル圧縮の有望な方法であるポストトレーニング量子化(PTQ)は、ViTによる精度劣化問題に直面している。
これには2つの理由がある:既存の量子化パラダイムは、ソフトマックス後のアクティベーションのゆるい分布にうまく適合せず、レイアノーム後のアクティベーションの再パラメータ化後に必然的に精度が低下する。
そこで我々は,DopQ-ViT という名前の視覚変換器のための分散フレンドリーかつアウトリー・アウェアなポストトレーニング量子化法を提案する。
DopQ-ViTは、現在の量子化器の非効率性を分析し、TanQと呼ばれる分布に優しいタン量子化器を導入する。
TanQは、Softmax後のアクティベーションのパワーロー分布をより正確に保存し、良好な結果を得るために、1付近の値に重点を置いている。
さらに、チャネルワイドから層ワイド量子化へのポストレイアノームの活性化をパラメータ化する場合、スケーリング要因のアウトレーヤの影響が主な原因である。
そこで、DopQ-ViTは、外乱の影響を補償し、量子化モデルの性能を保ったSOSFと呼ばれる最適スケーリング係数を探索する方法を提案する。
DopQ-ViTは広範囲な検証を行っており、量子化モデル、特に低ビット設定での大幅なパフォーマンス向上を示している。
関連論文リスト
- AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers [7.155242379236052]
ビジョントランスフォーマー(ViT)の量子化は、これらの課題を緩和するための有望なソリューションとして現れている。
既存の手法は依然として低ビットでの精度の低下に悩まされている。
ADFQ-ViTは、画像分類、オブジェクト検出、および4ビットでのインスタンスセグメンテーションタスクにおいて、様々なベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2024-07-03T02:41:59Z) - MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision
Transformer [7.041718444626999]
視覚変換器(MPTQ-ViT)のための混合精度後学習量子化フレームワークを提案する。
我々のViT,DeiT,Swinに関する実験では,ImageNetデータセットのSOTAと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2024-01-26T14:25:15Z) - I&S-ViT: An Inclusive & Stable Method for Pushing the Limit of Post-Training ViTs Quantization [49.17407185195788]
我々は,ViTのPTQを包括的かつ安定した方法で制御する新しい手法であるI&S-ViTを紹介する。
I&S-ViTは3ビットのViT-Bの性能を50.68%向上させた。
論文 参考訳(メタデータ) (2023-11-16T13:07:47Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - Towards Accurate Post-Training Quantization for Vision Transformer [48.779346466374406]
既存のトレーニング後の量子化手法は依然として深刻な性能低下を引き起こしている。
APQ-ViTは、既存のトレーニング後の量子化手法を証明マージンによって超越している。
論文 参考訳(メタデータ) (2023-03-25T03:05:26Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
視覚変換器のための新しいPTQフレームワークRepQ-ViTを提案する。
RepQ-ViTは量子化と推論プロセスを分離する。
既存の強力なベースラインを上回り、ViTの4ビットPTQの精度を有効レベルまで向上させることができる。
論文 参考訳(メタデータ) (2022-12-16T02:52:37Z) - NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization
for Vision Transformers [53.85087932591237]
NoisyQuantは、視覚変換器のトレーニング後のアクティベーション量子化性能に対する量子化器に依存しない拡張である。
理論的な洞察に基づいて、NoisyQuantは重い尾の活性化分布を積極的に変化させる最初の成功を達成している。
NoisyQuantは、最小の計算オーバーヘッドで視覚変換器のトレーニング後の量子化性能を大幅に改善する。
論文 参考訳(メタデータ) (2022-11-29T10:02:09Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。