論文の概要: Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits
- arxiv url: http://arxiv.org/abs/2306.03741v4
- Date: Mon, 18 Nov 2024 07:26:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:19.920610
- Title: Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits
- Title(参考訳): 学習前テンソル・トレインネットワークは変分量子回路を用いた機械学習を実現する
- Authors: Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, Min-Hsiu Hsieh,
- Abstract要約: 変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
- 参考スコア(独自算出の注目度): 70.97518416003358
- License:
- Abstract: Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices. While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition. To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC. Our theoretical analysis, grounded in two-stage empirical risk minimization, provides an upper bound on the transfer learning risk. It demonstrates the approach's advantages in overcoming the optimization challenge while maintaining TTN-VQC's generalization capability. We validate our findings through experiments on quantum dot and handwritten digit classification using simulated and actual NISQ environments.
- Abstract(参考訳): 変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
2段階の実証的リスク最小化を前提とした理論的解析は、転送学習リスクに上限を与える。
これは、TTN-VQCの一般化能力を維持しながら最適化課題を克服するアプローチの利点を示している。
我々は、シミュレーションおよび実際のNISQ環境を用いて、量子ドットと手書き桁分類の実験を通して、これらの知見を検証した。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Neural network encoded variational quantum algorithms [0.241710192205034]
ニューラルネットワーク(NN)符号化変分量子アルゴリズム(VQA)という一般的なフレームワークを導入する。
NN-VQAは与えられた問題からニューラルネットワークに入力(ハミルトンのパラメータなど)を供給し、その出力を使用して標準VQAのアンサッツ回路をパラメータ化する。
パラメータ化されたXXZスピンモデルの基底状態を解決するためのNN変分量子固有解器(VQE)について報告する。
論文 参考訳(メタデータ) (2023-08-02T10:32:57Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
本研究では,次元減少と機能回帰のためのエンドツーエンドの量子ニューラルネットワークであるTTN-VQCを提案する。
また,polyak-Lojasiewicz (PL) 条件を利用してTTN-VQCの最適化特性を特徴付ける。
論文 参考訳(メタデータ) (2022-06-08T06:54:07Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。