DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
- URL: http://arxiv.org/abs/2408.03291v3
- Date: Fri, 20 Jun 2025 03:08:28 GMT
- Title: DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
- Authors: Lianwei Yang, Haisong Gong, Haokun Lin, Yichen Wu, Zhenan Sun, Qingyi Gu,
- Abstract summary: We propose DopQ-ViT, a Distribution-friendly and Outlier-aware Post-training Quantization method for Vision Transformers (ViTs)<n>First, DopQ-ViT introduces the Tan Quantizer (TanQ), which better preserves the power-law distribution of post-Softmax activations by focusing more on values near 1.<n>Second, DopQ-ViT presents the MAD-guided Optimal Scaling Factor (MOSF), which selects the optimal scaling factor without introducing additional calculations.
- Score: 31.791935689364866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Transformers (ViTs) have gained significant attention, but their high computing cost limits the practical applications. While post-training quantization (PTQ) reduces model size and speeds up inference, it often degrades performance, especially in low-bit settings. We identify two key reasons for the performance degradation: 1) existing quantization methods fail to align with the power-law distribution of post-Softmax activations, and 2) reparameterizing post-LayerNorm activations leads to a performance drop due to the significant influence of outliers in the scaling factors. To address these challenges, we propose DopQ-ViT, a Distribution-friendly and Outlier-aware Post-training Quantization method for ViTs. First, DopQ-ViT introduces the Tan Quantizer (TanQ), which better preserves the power-law distribution of post-Softmax activations by focusing more on values near 1. Second, DopQ-ViT presents the MAD-guided Optimal Scaling Factor (MOSF), which selects the optimal scaling factor without introducing additional calculations. Extensive experiments across various ViT models and quantization settings demonstrate that DopQ-ViT, with the help of TanQ and MOSF, outperforms previous PTQ methods on both classification and detection tasks.
Related papers
- LRQ-DiT: Log-Rotation Post-Training Quantization of Diffusion Transformers for Text-to-Image Generation [34.14174796390669]
Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference.<n>Existing PTQ methods suffer from severe performance degradation under extreme low-bit settings.<n>We propose LRQ-DiT, an efficient and accurate PTQ framework.
arXiv Detail & Related papers (2025-08-05T14:16:11Z) - FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - APHQ-ViT: Post-Training Quantization with Average Perturbation Hessian Based Reconstruction for Vision Transformers [71.2294205496784]
We propose textbfAPHQ-ViT, a novel PTQ approach based on importance estimation with Average Perturbation Hessian (APH)
We show that APHQ-ViT using linear quantizers outperforms existing PTQ methods by substantial margins in 3-bit and 4-bit across different vision tasks.
arXiv Detail & Related papers (2025-04-03T11:48:56Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)
RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.
Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - AIQViT: Architecture-Informed Post-Training Quantization for Vision Transformers [42.535119270045605]
Post-training quantization (PTQ) has emerged as a promising solution for reducing the storage and computational cost of vision transformers (ViTs)
This paper proposes an innovative PTQ method tailored for ViTs, termed AIQViT (Architecture-Informed Post-training Quantization for ViTs)
arXiv Detail & Related papers (2025-02-07T03:04:50Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers [7.155242379236052]
Quantization of Vision Transformers (ViTs) has emerged as a promising solution to mitigate these challenges.
Existing methods still suffer from significant accuracy loss at low-bit.
ADFQ-ViT provides significant improvements over various baselines in image classification, object detection, and instance segmentation tasks at 4-bit.
arXiv Detail & Related papers (2024-07-03T02:41:59Z) - MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision
Transformer [7.041718444626999]
We propose a mixed-precision post-training quantization framework for vision transformers (MPTQ-ViT)
Our experiments on ViT, DeiT, and Swin demonstrate significant accuracy improvements compared with SOTA on the ImageNet dataset.
arXiv Detail & Related papers (2024-01-26T14:25:15Z) - I&S-ViT: An Inclusive & Stable Method for Pushing the Limit of Post-Training ViTs Quantization [49.17407185195788]
We introduce I&S-ViT, a novel method that regulates the PTQ of ViTs in an inclusive and stable fashion.
I&S-ViT elevates the performance of 3-bit ViT-B by an impressive 50.68%.
arXiv Detail & Related papers (2023-11-16T13:07:47Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Towards Accurate Post-Training Quantization for Vision Transformer [48.779346466374406]
Existing post-training quantization methods still cause severe performance drops.
APQ-ViT surpasses the existing post-training quantization methods by convincing margins.
arXiv Detail & Related papers (2023-03-25T03:05:26Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
We propose RepQ-ViT, a novel PTQ framework for vision transformers (ViTs)
RepQ-ViT decouples the quantization and inference processes.
It can outperform existing strong baselines and encouragingly improve the accuracy of 4-bit PTQ of ViTs to a usable level.
arXiv Detail & Related papers (2022-12-16T02:52:37Z) - NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization
for Vision Transformers [53.85087932591237]
NoisyQuant is a quantizer-agnostic enhancement for the post-training activation quantization performance of vision transformers.
Building on the theoretical insight, NoisyQuant achieves the first success on actively altering the heavy-tailed activation distribution.
NoisyQuant largely improves the post-training quantization performance of vision transformer with minimal computation overhead.
arXiv Detail & Related papers (2022-11-29T10:02:09Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.