Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits
- URL: http://arxiv.org/abs/2306.03741v4
- Date: Mon, 18 Nov 2024 07:26:43 GMT
- Title: Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits
- Authors: Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, Min-Hsiu Hsieh,
- Abstract summary: Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
- Score: 70.97518416003358
- License:
- Abstract: Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices. While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition. To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC. Our theoretical analysis, grounded in two-stage empirical risk minimization, provides an upper bound on the transfer learning risk. It demonstrates the approach's advantages in overcoming the optimization challenge while maintaining TTN-VQC's generalization capability. We validate our findings through experiments on quantum dot and handwritten digit classification using simulated and actual NISQ environments.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Neural network encoded variational quantum algorithms [0.241710192205034]
We introduce a general framework called neural network (NN) encoded variational quantum algorithms (VQAs)
NN-VQA feeds input (such as parameters of a Hamiltonian) from a given problem to a neural network and uses its outputs to parameterize an ansatz circuit for the standard VQA.
We present results on NN-variational quantum eigensolver (VQE) for solving the ground state of parameterized XXZ spin models.
arXiv Detail & Related papers (2023-08-02T10:32:57Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
In this work, we put forth an end-to-end quantum neural network, namely, TTN-VQC, for dimensionality reduction and functional regression.
We also characterize the optimization properties of TTN-VQC by leveraging the Polyak-Lojasiewicz (PL) condition.
arXiv Detail & Related papers (2022-06-08T06:54:07Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.