論文の概要: Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
- arxiv url: http://arxiv.org/abs/2408.03314v1
- Date: Tue, 6 Aug 2024 17:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:28:25.001612
- Title: Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
- Title(参考訳): LLMテスト時間計算の最適スケーリングはモデルパラメータのスケーリングよりも効果的である
- Authors: Charlie Snell, Jaehoon Lee, Kelvin Xu, Aviral Kumar,
- Abstract要約: LLMにおける推論時間計算のスケーリングについて検討する。
どちらの場合も、テスト時間計算のスケーリングに対する異なるアプローチの有効性は、プロンプトの難しさによって大きく異なることがわかった。
- 参考スコア(独自算出の注目度): 27.656263126925815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling LLMs to improve their outputs by using more test-time computation is a critical step towards building generally self-improving agents that can operate on open-ended natural language. In this paper, we study the scaling of inference-time computation in LLMs, with a focus on answering the question: if an LLM is allowed to use a fixed but non-trivial amount of inference-time compute, how much can it improve its performance on a challenging prompt? Answering this question has implications not only on the achievable performance of LLMs, but also on the future of LLM pretraining and how one should tradeoff inference-time and pre-training compute. Despite its importance, little research attempted to understand the scaling behaviors of various test-time inference methods. Moreover, current work largely provides negative results for a number of these strategies. In this work, we analyze two primary mechanisms to scale test-time computation: (1) searching against dense, process-based verifier reward models; and (2) updating the model's distribution over a response adaptively, given the prompt at test time. We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt. This observation motivates applying a "compute-optimal" scaling strategy, which acts to most effectively allocate test-time compute adaptively per prompt. Using this compute-optimal strategy, we can improve the efficiency of test-time compute scaling by more than 4x compared to a best-of-N baseline. Additionally, in a FLOPs-matched evaluation, we find that on problems where a smaller base model attains somewhat non-trivial success rates, test-time compute can be used to outperform a 14x larger model.
- Abstract(参考訳): LLMをもっとテスト時間計算を使って出力を改善することは、オープンな自然言語で操作できる汎用的な自己改善エージェントを構築するための重要なステップである。
本稿では, LLMにおける推論時間計算のスケーリングについて検討し, LLMが固定量でも非自明量でも構わない推論時間計算を許せば, 挑戦的なプロンプトでその性能をどの程度向上できるのか,という疑問に答えることに焦点をあてる。
この疑問への答えは、LLMの達成可能な性能だけでなく、LLM事前学習の将来や、推論時間と事前学習計算のトレードオフ方法にも影響する。
その重要性にも拘わらず、様々なテストタイム推論手法のスケーリング挙動を解明しようとする研究はほとんどなかった。
さらに、現在の作業は、これらの戦略の多くに否定的な結果をもたらします。
本研究では,(1)高密度なプロセスベースの検証者報酬モデルに対する探索,(2)テスト時のプロンプトが与えられた場合の応答上のモデルの分布を適応的に更新する2つの主要なメカニズムを解析する。
どちらの場合も、テスト時間計算のスケーリングに対する異なるアプローチの有効性は、プロンプトの難しさによって大きく異なることがわかった。
この観察は、プロンプト毎のテスト時間計算を適応的に最適に割り当てる「計算最適化」スケーリング戦略の適用を動機付けている。
この計算最適戦略を用いることで、ベストオブNベースラインに比べて、テストタイムの計算スケーリングの効率を4倍以上に向上させることができる。
さらに、FLOPsマッチング評価において、より小さなベースモデルが多少の自明な成功率を達成する問題において、テスト時間計算が14倍のモデルより優れていることが判明した。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - Scaling Test-Time Compute Without Verification or RL is Suboptimal [70.28430200655919]
RL法や検索法に基づく検証器ベース (VB) 手法による微調整は, 一定量の計算・データ予算を条件として, 蒸留・クローニングに基づく検証器フリー (VF) 手法よりもはるかに優れていることを示す。
我々は,3/8Bの事前学習型LLMのドクティクスと数学推論の両問題に対して,我々の理論を実証的に相関させ,テスト時間計算のスケーリングには検証が不可欠であることを確認した。
論文 参考訳(メタデータ) (2025-02-17T18:43:24Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
大規模な言語モデルによる数学的推論への既存のアプローチは、一般化可能性(英語版)にはChain-of-Thought(英語版)(CoT)、正確な計算にはTool-Integrated Reasoning(英語版)(TIR)に依存している。
本稿では, LLM が自然に推論戦略をパーソナライズできる適応型フレームワークである TATA (Teaching LLMs according their Aptitude) を提案する。
論文 参考訳(メタデータ) (2025-02-17T16:56:23Z) - Bag of Tricks for Inference-time Computation of LLM Reasoning [10.366475014241407]
複雑度の異なる推論タスクに対して,様々な推論時間計算戦略を検証・ベンチマークする。
我々のアブレーション研究は、これまで見過ごされていた戦略が性能を大幅に向上させることができることを示している。
我々は,8つの推論タスクにまたがる6つの代表的手法を体系的に評価することにより,推論時間計算の標準ベンチマークを確立する。
論文 参考訳(メタデータ) (2025-02-11T02:31:11Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
大規模言語モデルのテスト時間計算のための2つの原理的アルゴリズムを提案する。
理論的には、1つのアルゴリズムの故障確率は、そのテスト時間計算が大きくなるにつれて指数関数的に減衰する。
論文 参考訳(メタデータ) (2024-11-29T05:29:47Z) - Online Cascade Learning for Efficient Inference over Streams [9.516197133796437]
大規模言語モデル(LLM)は、データストリームに関する複雑なクエリに応答する自然な役割を持つ。
この課題に対処する最初のアプローチであるオンラインカスケード学習を提案する。
我々は,オンラインでカスケードを学習するタスクを模倣学習問題として定式化する。
論文 参考訳(メタデータ) (2024-02-07T01:46:50Z) - Benchmarking Causal Study to Interpret Large Language Models for Source
Code [6.301373791541809]
本稿では,3つのSEタスクをキュレートしたテストベッドからなるGalerasというベンチマーク戦略を紹介する。
本稿では,ChatGPTの性能に関するケーススタディを,個別の迅速なエンジニアリング手法で実施することで,ベンチマーク戦略の知見を述べる。
論文 参考訳(メタデータ) (2023-08-23T20:32:12Z) - M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast
Self-Adaptation [145.7321032755538]
L2O(Learning to Optimize)は、複雑なタスクの最適化手順を著しく加速させるため、注目を集めている。
本稿では, アウト・オブ・ディストリビューションタスクへの高速なテスト時間自己適応を実現するL2Oをメタトレーニングすることで, このオープンな課題に対する潜在的な解決策を検討する。
論文 参考訳(メタデータ) (2023-02-28T19:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。