論文の概要: Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs
- arxiv url: http://arxiv.org/abs/2507.02076v1
- Date: Wed, 02 Jul 2025 18:27:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.081222
- Title: Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs
- Title(参考訳): 予算に関する考察:LLMにおける適応型および制御可能なテスト時間計算に関する調査
- Authors: Mohammad Ali Alomrani, Yingxue Zhang, Derek Li, Qianyi Sun, Soumyasundar Pal, Zhanguang Zhang, Yaochen Hu, Rohan Deepak Ajwani, Antonios Valkanas, Raika Karimi, Peng Cheng, Yunzhou Wang, Pengyi Liao, Hanrui Huang, Bin Wang, Jianye Hao, Mark Coates,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いタスクを解くことができる汎用エージェントへと急速に進歩してきた。
彼らは、タスクの複雑さに関わらず、固定推論時間計算を適用し、しばしば難しいことを考えながら単純な問題を過小評価する。
本調査では, LLM推論の計算効率向上を目的とした, 効率的なテスト時間計算戦略の総合的なレビューを行う。
- 参考スコア(独自算出の注目度): 45.83245433138508
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have rapidly progressed into general-purpose agents capable of solving a broad spectrum of tasks. However, current models remain inefficient at reasoning: they apply fixed inference-time compute regardless of task complexity, often overthinking simple problems while underthinking hard ones. This survey presents a comprehensive review of efficient test-time compute (TTC) strategies, which aim to improve the computational efficiency of LLM reasoning. We introduce a two-tiered taxonomy that distinguishes between L1-controllability, methods that operate under fixed compute budgets, and L2-adaptiveness, methods that dynamically scale inference based on input difficulty or model confidence. We benchmark leading proprietary LLMs across diverse datasets, highlighting critical trade-offs between reasoning performance and token usage. Compared to prior surveys on efficient reasoning, our review emphasizes the practical control, adaptability, and scalability of TTC methods. Finally, we discuss emerging trends such as hybrid thinking models and identify key challenges for future work towards making LLMs more computationally efficient, robust, and responsive to user constraints.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いタスクを解くことができる汎用エージェントへと急速に進歩してきた。
しかし、現在のモデルは推論において非効率的であり、それらはタスクの複雑さに関わらず固定された推論時計算を適用し、しばしば難しいことを考えながら単純な問題を過小評価する。
本調査では, LLM推論の計算効率向上を目的とした, 効率的なテスト時間計算(TTC)戦略の総合的なレビューを行う。
本稿では,L1-制御可能性,固定計算予算の下で動作する方法,L2-適応性,入力難易度やモデル信頼度に基づいて推論を動的にスケールする手法を区別する2階層分類法を提案する。
さまざまなデータセットにまたがるプロプライエタリなLLMをベンチマークし、推論のパフォーマンスとトークン使用との間の重要なトレードオフを強調します。
本研究は, 効率的な推論に関する先行調査と比較し, TTC法の実践的制御, 適応性, 拡張性を強調した。
最後に、ハイブリッド思考モデルのような新興トレンドについて議論し、LLMをより計算効率が高く、堅牢で、ユーザの制約に応答できるものにするための今後の取り組みにおける重要な課題を特定する。
関連論文リスト
- TACO: Think-Answer Consistency for Optimized Long-Chain Reasoning and Efficient Data Learning via Reinforcement Learning in LVLMs [50.820065021136024]
DeepSeek R1には、大規模言語モデル(LLM)のためのかなり高度な複雑な推論がある。
最近の手法は、R1の推論能力をマルチモーダルな設定で再現しようと試みている。
視覚推論のための新しい強化学習アルゴリズムTACOを提案する。
論文 参考訳(メタデータ) (2025-05-27T06:30:48Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
現在の大言語モデル(LLM)は、通常、難易度に関わらず、すべての質問に対して、単純または複雑に固定された推論戦略を採用する。
このようなタスクと推論プロセスの複雑さの変化の無視は、パフォーマンスと効率のバランスを損なう。
既存の手法では, 難易度が異なる問題に対処するために, 学習不要な高速スロー思考システムを導入しようとするが, 厳密な解レベルの戦略調整によって制限される。
プロセスレベル適応思考モードスイッチング(PATS)という新しい推論パラダイムを提案し,各ステップの難易度に基づいてLLMが推論戦略を動的に調整し,そのバランスを最適化する。
論文 参考訳(メタデータ) (2025-05-25T17:58:50Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
大規模な言語モデルによる数学的推論への既存のアプローチは、一般化可能性(英語版)にはChain-of-Thought(英語版)(CoT)、正確な計算にはTool-Integrated Reasoning(英語版)(TIR)に依存している。
本稿では, LLM が自然に推論戦略をパーソナライズできる適応型フレームワークである TATA (Teaching LLMs according their Aptitude) を提案する。
論文 参考訳(メタデータ) (2025-02-17T16:56:23Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
本稿では,大規模言語モデル(LLM)推論を強化するために,DID法を提案する。
DIDはリトルストーン次元と情報エントロピーを組み合わせた2次元複雑度評価システムを実装している。
その結果,推理精度と解の精度は有意に向上した。
論文 参考訳(メタデータ) (2024-10-03T18:30:47Z) - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters [27.656263126925815]
LLMにおける推論時間計算のスケーリングについて検討する。
どちらの場合も、テスト時間計算のスケーリングに対する異なるアプローチの有効性は、プロンプトの難しさによって大きく異なることがわかった。
論文 参考訳(メタデータ) (2024-08-06T17:35:05Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。