Explainable AI-based Intrusion Detection System for Industry 5.0: An Overview of the Literature, associated Challenges, the existing Solutions, and Potential Research Directions
- URL: http://arxiv.org/abs/2408.03335v1
- Date: Sun, 21 Jul 2024 09:28:05 GMT
- Title: Explainable AI-based Intrusion Detection System for Industry 5.0: An Overview of the Literature, associated Challenges, the existing Solutions, and Potential Research Directions
- Authors: Naseem Khan, Kashif Ahmad, Aref Al Tamimi, Mohammed M. Alani, Amine Bermak, Issa Khalil,
- Abstract summary: Industry 5.0 focuses on human and Artificial Intelligence (AI) collaboration for performing different tasks in manufacturing.
The huge involvement of these devices and interconnection in various critical areas, such as economy, health, education and defense systems, poses several types of potential security flaws.
XAI has been proven a very effective and powerful tool in different areas of cybersecurity, such as intrusion detection, malware detection, and phishing detection.
- Score: 3.99098935469955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industry 5.0, which focuses on human and Artificial Intelligence (AI) collaboration for performing different tasks in manufacturing, involves a higher number of robots, Internet of Things (IoTs) devices and interconnections, Augmented/Virtual Reality (AR), and other smart devices. The huge involvement of these devices and interconnection in various critical areas, such as economy, health, education and defense systems, poses several types of potential security flaws. AI itself has been proven a very effective and powerful tool in different areas of cybersecurity, such as intrusion detection, malware detection, and phishing detection, among others. Just as in many application areas, cybersecurity professionals were reluctant to accept black-box ML solutions for cybersecurity applications. This reluctance pushed forward the adoption of eXplainable Artificial Intelligence (XAI) as a tool that helps explain how decisions are made in ML-based systems. In this survey, we present a comprehensive study of different XAI-based intrusion detection systems for industry 5.0, and we also examine the impact of explainability and interpretability on Cybersecurity practices through the lens of Adversarial XIDS (Adv-XIDS) approaches. Furthermore, we analyze the possible opportunities and challenges in XAI cybersecurity systems for industry 5.0 that elicit future research toward XAI-based solutions to be adopted by high-stakes industry 5.0 applications. We believe this rigorous analysis will establish a foundational framework for subsequent research endeavors within the specified domain.
Related papers
- Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Cyber Security Requirements for Platforms Enhancing AI Reproducibility [0.0]
This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms.
Five popular AI platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed.
The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures.
arXiv Detail & Related papers (2023-09-27T09:43:46Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
Explainable Artificial Intelligence (XAI) aims to create machine learning models that can provide clear and interpretable explanations for their decisions and actions.
In the field of network cybersecurity, XAI has the potential to revolutionize the way we approach network security by enabling us to better understand the behavior of cyber threats.
arXiv Detail & Related papers (2023-03-07T22:54:18Z) - Explainable Artificial Intelligence and Cybersecurity: A Systematic
Literature Review [0.799536002595393]
XAI aims to make the operation of AI algorithms more interpretable for its users and developers.
This work seeks to investigate the current research scenario on XAI applied to cybersecurity.
arXiv Detail & Related papers (2023-02-27T17:47:56Z) - Explainable Intrusion Detection Systems (X-IDS): A Survey of Current
Methods, Challenges, and Opportunities [0.0]
Intrusion Detection Systems (IDS) have received widespread adoption due to their ability to handle vast amounts of data with a high prediction accuracy.
IDSs designed using Deep Learning (DL) techniques are often treated as black box models and do not provide a justification for their predictions.
This survey reviews the state-of-the-art in explainable AI (XAI) for IDS, its current challenges, and discusses how these challenges span to the design of an X-IDS.
arXiv Detail & Related papers (2022-07-13T14:31:46Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
Smart grid systems are critical to the power industry, however their sophisticated architectural design and operations expose them to a number of cybersecurity threats.
Artificial Intelligence (AI)-based technologies are becoming increasingly popular for detecting cyber assaults in a variety of computer settings.
The present AI systems are being exposed and vanquished because of the recent emergence of sophisticated adversarial systems such as Generative Adversarial Networks (GAN)
arXiv Detail & Related papers (2022-02-14T21:41:36Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.