MLC-GCN: Multi-Level Generated Connectome Based GCN for AD Analysis
- URL: http://arxiv.org/abs/2408.03358v1
- Date: Tue, 6 Aug 2024 14:18:36 GMT
- Title: MLC-GCN: Multi-Level Generated Connectome Based GCN for AD Analysis
- Authors: Wenqi Zhu, Yinghua Fu, Ze Wang,
- Abstract summary: Alzheimers Disease (AD) is a currently incurable neurodegeneartive disease.
Alzheimer's Disease (AD) is a currently incurable neurodegeneartive disease.
- Score: 14.541273450756128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease (AD) is a currently incurable neurodegeneartive disease. Accurately detecting AD, especially in the early stage, represents a high research priority. AD is characterized by progressive cognitive impairments that are related to alterations in brain functional connectivity (FC). Based on this association, many studies have been published over the decades using FC and machine learning to differentiate AD from healthy aging. The most recent development in this detection method highlights the use of graph neural network (GNN) as the brain functionality analysis. In this paper, we proposed a stack of spatio-temporal feature extraction and graph generation based AD classification model using resting state fMRI. The proposed multi-level generated connectome (MLC) based graph convolutional network (GCN) (MLC-GCN) contains a multi-graph generation block and a GCN prediction block. The multi-graph generation block consists of a hierarchy of spatio-temporal feature extraction layers for extracting spatio-temporal rsfMRI features at different depths and building the corresponding connectomes. The GCN prediction block takes the learned multi-level connectomes to build and optimize GCNs at each level and concatenates the learned graphical features as the final predicting features for AD classification. Through independent cohort validations, MLC-GCN shows better performance for differentiating MCI, AD, and normal aging than state-of-art GCN and rsfMRI based AD classifiers. The proposed MLC-GCN also showed high explainability in terms of learning clinically reasonable connectome node and connectivity features from two independent datasets. While we only tested MLC-GCN on AD, the basic rsfMRI-based multi-level learned GCN based outcome prediction strategy is valid for other diseases or clinical outcomes.
Related papers
- MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities.
We leveraged structural and functional MRI to investigate the disease-induced GM and functional network connectivity changes.
We propose a novel DL-based classification framework where a generative module employing Cycle GAN was adopted for imputing missing data.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Graph Autoencoders for Embedding Learning in Brain Networks and Major
Depressive Disorder Identification [13.907981019956832]
We propose a graph deep learning framework to incorporate the non-Euclidean information about graph structure for classifying brain networks in major depressive disorder (MDD)
We design a novel graph autoencoder (GAE) architecture based on the graph convolutional networks (GCNs) to embed the topological structure and node content of large-sized fMRI networks into low-dimensional latent representations.
Our new framework demonstrates feasibility of learning graph embeddings on brain networks to provide discriminative information for diagnosis of brain disorders.
arXiv Detail & Related papers (2021-07-27T14:12:39Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimer's disease(AD) Analysis.
We propose a novel Hypergraph Generative Adversarial Networks(HGGAN) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI.
arXiv Detail & Related papers (2021-07-21T09:02:29Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
We propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating the fMRI time series and the functional connectivity (FC) between each pair of brain regions.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score.
arXiv Detail & Related papers (2021-01-20T20:53:07Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.