Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification
- URL: http://arxiv.org/abs/2310.05371v2
- Date: Tue, 10 Oct 2023 10:55:10 GMT
- Title: Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification
- Authors: Anil B. Gavade, Neel Kanwal, Priyanka A. Gavade, Rajendra Nerli
- Abstract summary: Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prostate cancer (PCa) is a severe disease among men globally. It is important
to identify PCa early and make a precise diagnosis for effective treatment. For
PCa diagnosis, Multi-parametric magnetic resonance imaging (mpMRI) emerged as
an invaluable imaging modality that offers a precise anatomical view of the
prostate gland and its tissue structure. Deep learning (DL) models can enhance
existing clinical systems and improve patient care by locating regions of
interest for physicians. Recently, DL techniques have been employed to develop
a pipeline for segmenting and classifying different cancer types. These studies
show that DL can be used to increase diagnostic precision and give objective
results without variability. This work uses well-known DL models for the
classification and segmentation of mpMRI images to detect PCa. Our
implementation involves four pipelines; Semantic DeepSegNet with ResNet50,
DeepSegNet with recurrent neural network (RNN), U-Net with RNN, and U-Net with
a long short-term memory (LSTM). Each segmentation model is paired with a
different classifier to evaluate the performance using different metrics. The
results of our experiments show that the pipeline that uses the combination of
U-Net and the LSTM model outperforms all other combinations, excelling in both
segmentation and classification tasks.
Related papers
- Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO [0.6116681488656472]
This study presents a comparative analysis of three deep learning-based methods, Mamba, SAM, and YOLO, for segmenting prostate cancer histopathology images.
We evaluated the performance of these models on two comprehensive datasets, Gleason 2019 and SICAPv2, using Dice score, precision, and recall metrics.
The H-vmunet model's advanced architecture, which integrates high-order visual state spaces and 2D-selective-scan operations, enables efficient and sensitive lesion detection.
arXiv Detail & Related papers (2024-09-24T16:04:29Z) - Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound [4.662744612095781]
We propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS.
The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE)
The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer.
arXiv Detail & Related papers (2024-06-20T07:45:01Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions.
The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting.
We propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth.
arXiv Detail & Related papers (2021-04-14T18:07:03Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.