論文の概要: Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2408.03435v1
- Date: Tue, 6 Aug 2024 20:21:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:25:11.152714
- Title: Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles
- Title(参考訳): 移動車と移動車のための通信対応エッジ選択
- Authors: Nazish Tahir, Ramviyas Parasuraman, Haijian Sun,
- Abstract要約: 時間に敏感で計算集約的なタスクをオフロードすることで、サービスの効率が向上する。
本稿では,Deep Deterministic Policy Gradient (DDPG)アルゴリズムに基づく深層強化学習フレームワークを提案する。
計算負荷, サービス遅延, 割り込みを最小限に抑えるために, APの通信と切替の同時割り当て方式を提案する。
- 参考スコア(独自算出の注目度): 1.2453219864236245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offloading time-sensitive, computationally intensive tasks-such as advanced learning algorithms for autonomous driving-from vehicles to nearby edge servers, vehicle-to-infrastructure (V2I) systems, or other collaborating vehicles via vehicle-to-vehicle (V2V) communication enhances service efficiency. However, whence traversing the path to the destination, the vehicle's mobility necessitates frequent handovers among the access points (APs) to maintain continuous and uninterrupted wireless connections to maintain the network's Quality of Service (QoS). These frequent handovers subsequently lead to task migrations among the edge servers associated with the respective APs. This paper addresses the joint problem of task migration and access-point handover by proposing a deep reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm. A joint allocation method of communication and computation of APs is proposed to minimize computational load, service latency, and interruptions with the overarching goal of maximizing QoS. We implement and evaluate our proposed framework on simulated experiments to achieve smooth and seamless task switching among edge servers, ultimately reducing latency.
- Abstract(参考訳): 時間に敏感で計算集約的なタスクをオフロードする – 自動運転車から近くのエッジサーバへの高度な学習アルゴリズム,V2Iシステム,あるいはV2V通信による他の協力車両などによって,サービスの効率が向上する。
しかし、目的地に向かう経路を横切ると、車両の移動手段はアクセスポイント(AP)間で頻繁にハンドオーバを必要とし、連続的かつ断続的な無線接続を維持し、ネットワークのQuality of Service(QoS)を維持する。
これらの頻繁なハンドオーバは、それぞれのAPに関連するエッジサーバ間のタスクマイグレーションにつながる。
本稿では,Deep Deterministic Policy Gradient(DDPG)アルゴリズムに基づく深層強化学習フレームワークを提案することにより,タスクマイグレーションとアクセスポイントハンドオーバの連立問題に対処する。
QoSの最大化を目標とする計算負荷,サービス遅延,割り込みを最小化するために,APの通信と計算の同時割り当て方式を提案する。
我々は,エッジサーバ間のスムーズでシームレスなタスク切替を実現するためのシミュレーション実験で提案したフレームワークの実装と評価を行い,最終的にレイテンシを低減した。
関連論文リスト
- Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - A Deep RL Approach on Task Placement and Scaling of Edge Resources for Cellular Vehicle-to-Network Service Provisioning [6.625994697789603]
エッジリソースのサービスタスク配置とスケーリングの相互依存問題に対処する。
本稿では,ハイブリッド行動空間に対するDHPG(Deep Reinforcement Learning)アプローチを提案する。
DHPGの性能は、実世界のC-V2Nトラフィックデータセットを用いたシミュレーションにより、いくつかの最先端(SoA)ソリューションに対して評価される。
論文 参考訳(メタデータ) (2023-05-16T22:19:19Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
我々は、ニューラルネットワークを協調的かつ分散的に訓練するために、近隣のICVをコーディネートする基地局を考える。
車両の移動性のため、基地局とICV間の接続は短命である。
本稿では,各トレーニングラウンドの時間と局所的なイテレーション回数を最適化し,FL-ICVフレームワークの高速化を提案する。
論文 参考訳(メタデータ) (2022-12-07T08:53:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
自動運転車(AV)の信頼性向上に向けたV2I通信の重要性が高まっている
道路衝突を最小限に抑えるため,AVのネットワーク選択と運転ポリシーを同時に最適化することが重要である。
我々は,効率的なネットワーク選択と自律運転ポリシーを特徴付ける強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-08-03T04:33:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - Deep Reinforcement Learning for Collaborative Edge Computing in
Vehicular Networks [40.957135065965055]
協調エッジコンピューティングフレームワークは、コンピューティングサービスのレイテンシを低減し、車両ネットワークのサービスの信頼性を向上させるために開発されている。
人工知能(AI)に基づく協調コンピューティングアプローチが開発され、車両のタスクオフロード、コンピューティング、結果配信ポリシーが決定される。
当社のアプローチでは,サービスレイテンシとサービス障害ペナルティを含むサービスコストを,最適なワークロード割り当てとサーバの選択によって最小化することができる。
論文 参考訳(メタデータ) (2020-10-05T00:06:37Z) - Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line
and Off-policy Bandit Solutions [30.606518785629046]
高速変動車体環境では、ネットワークの混雑によりオフロードの遅延が発生する。
本稿では,バンディット理論に基づくオンラインアルゴリズムと非政治学習アルゴリズムを提案する。
提案手法は,最も混雑の少ないネットワークを選択することで,ネットワークのトラフィック変化に適応することを示す。
論文 参考訳(メタデータ) (2020-08-14T11:48:13Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。