論文の概要: Spacecraft inertial parameters estimation using time series clustering and reinforcement learning
- arxiv url: http://arxiv.org/abs/2408.03445v1
- Date: Tue, 6 Aug 2024 20:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 17:40:15.853865
- Title: Spacecraft inertial parameters estimation using time series clustering and reinforcement learning
- Title(参考訳): 時系列クラスタリングと強化学習を用いた宇宙機慣性パラメータ推定
- Authors: Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti,
- Abstract要約: 本稿では,その操作中に変化した場合に,宇宙船の慣性パラメータを推定する機械学習手法を提案する。
提案手法の性能は, マルチサテライト配置システムの場合に対して評価され, アルゴリズムはそのような操作において, 一般的な障害に対する耐性を示す。
- 参考スコア(独自算出の注目度): 0.504868948270058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a machine learning approach to estimate the inertial parameters of a spacecraft in cases when those change during operations, e.g. multiple deployments of payloads, unfolding of appendages and booms, propellant consumption as well as during in-orbit servicing and active debris removal operations. The machine learning approach uses time series clustering together with an optimised actuation sequence generated by reinforcement learning to facilitate distinguishing among different inertial parameter sets. The performance of the proposed strategy is assessed against the case of a multi-satellite deployment system showing that the algorithm is resilient towards common disturbances in such kinds of operations.
- Abstract(参考訳): 本稿では, 衛星の慣性パラメーターを, ペイロードの複数配置, 付加物やブームの展開, 推進剤の消費, 軌道内サービシングおよびアクティブデブリ除去操作で推定する機械学習手法を提案する。
機械学習アプローチでは、時系列クラスタリングと強化学習によって生成される最適化されたアクティベーションシーケンスを使用して、異なる慣性パラメータセットの区別を容易にする。
提案手法の性能は, マルチサテライト配置システムの場合に対して評価され, アルゴリズムはそのような操作において, 一般的な障害に対する耐性を示す。
関連論文リスト
- Anomaly Detection in Time Series of EDFA Pump Currents to Monitor Degeneration Processes using Fuzzy Clustering [0.0]
本稿では,EDFAシステムのポンプ電流時系列に対するファジィクラスタリングに基づく異常検出手法を提案する。
提案する変更検出フレームワーク(CDF)は,エントロピー解析(EA)と原理成分分析(PCA)とファジィクラスタリングの利点を戦略的に組み合わせている。
論文 参考訳(メタデータ) (2024-08-12T14:23:42Z) - Supervised Time Series Classification for Anomaly Detection in Subsea
Engineering [0.0]
IntactとBrokenの2つの状態を持つ物理システムに基づくシミュレーションデータに対する教師付き機械学習分類アルゴリズムの使用について検討する。
本稿では,時間データの事前処理について,統計的分散と次元縮小の手法を用いて包括的な議論を行う。
本稿では,さまざまなパフォーマンス指標に基づく各種手法の比較を行い,機械学習を意思決定のツールとして活用することの利点を示す。
論文 参考訳(メタデータ) (2024-03-12T18:25:10Z) - The Impact of LoRA on the Emergence of Clusters in Transformers [2.7309692684728617]
我々は,ciptsander2022sinkformers,geshkovski2023,geshkovski2023によって開発されたトランスフォーマーのフレームワークを用いて,トークンクラスタの構造的ダイナミクスに,注目パラメータや初期トークン値の変動がどう影響するかを数学的に検討する。
この研究は、LoRAアルゴリズム citehu2021lora,peft への実践的応用を通じて微調整分野に寄与し、LoRA強化トランスフォーマーモデルの振る舞いの理解を深める。
論文 参考訳(メタデータ) (2024-02-23T16:26:01Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
本稿では,アテンション機構の有効性を享受しながら,与えられたネットワークに対してSRPを実現するための,シンプルなアテンション型構造的再パラメータ化(ASR)を提案する。
本稿では,統計的観点から広範囲にわたる実験を行い,Stripe Observationという興味深い現象を発見し,チャネル注意値が訓練中に一定のベクトルに素早く接近することを明らかにする。
論文 参考訳(メタデータ) (2023-04-13T08:52:34Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
プロセスの表現を学習することは、機械学習の新たな問題である。
本手法は,周期関数,3次元オブジェクト,動的プロセスの表現の学習に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T11:00:24Z) - Learning Transition Models with Time-delayed Causal Relations [17.494609199646813]
提案アルゴリズムはまずマルコフの仮定による観測を予測した。
隠された変数は、関連する過去の出来事を追跡するメモリユニットである。
シミュレーションおよび実際のロボットタスクの実験は、この手法が現在の技術よりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2020-08-04T14:35:11Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNSは、非定常マルコフ決定過程におけるエピソード強化学習のためのアルゴリズムである。
我々は、状態-作用空間の被覆次元と時間とともにMDPの総変動にスケールする後悔境界を証明した。
論文 参考訳(メタデータ) (2020-07-09T21:37:13Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Double/Debiased Machine Learning for Dynamic Treatment Effects via
g-Estimation [25.610534178373065]
複数の治療が時間とともに割り当てられる場合の設定における治療効果の推定について検討する。
本稿では、治療の動的効果を推定するために、ダブル/デバイアスの機械学習フレームワークの拡張を提案する。
論文 参考訳(メタデータ) (2020-02-17T22:32:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。