論文の概要: Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling
- arxiv url: http://arxiv.org/abs/2006.11381v1
- Date: Fri, 19 Jun 2020 21:04:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:06:43.519698
- Title: Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling
- Title(参考訳): 時系列モデリングのためのニューラルネットワークを用いた最適位相空間再構成支援
- Authors: Lucas Pagliosa, Alexandru Telea, Rodrigo Mello
- Abstract要約: 位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction of phase spaces is an essential step to analyze time
series according to Dynamical System concepts. A regression performed on such
spaces unveils the relationships among system states from which we can derive
their generating rules, that is, the most probable set of functions responsible
for generating observations along time. In this sense, most approaches rely on
Takens' embedding theorem to unfold the phase space, which requires the
embedding dimension and the time delay. Moreover, although several methods have
been proposed to empirically estimate those parameters, they still face
limitations due to their lack of consistency and robustness, which has
motivated this paper. As an alternative, we here propose an artificial neural
network with a forgetting mechanism to implicitly learn the phase spaces
properties, whatever they are. Such network trains on forecasting errors and,
after converging, its architecture is used to estimate the embedding
parameters. Experimental results confirm that our approach is either as
competitive as or better than most state-of-the-art strategies while revealing
the temporal relationship among time-series observations.
- Abstract(参考訳): 位相空間の再構成は、動的システムの概念に従って時系列を分析するための重要なステップである。
そのような空間上で実行される回帰は、それらの生成規則、すなわち時間に沿って観測を生成する最も可能性の高い関数群を導出できるシステム状態間の関係を明らかにする。
この意味で、ほとんどのアプローチは、位相空間を展開するためにテイクの埋め込み定理に依存しており、埋め込み次元と時間遅れを必要とする。
さらに,これらのパラメータを実験的に推定する手法がいくつか提案されているが,一貫性の欠如やロバスト性のため,まだ限界に直面している。
そこで本研究では,相空間特性を暗黙的に学習する機構を持つニューラルネットワークを提案する。
このようなネットワークは予測エラーを訓練し、収束後、そのアーキテクチャを使って埋め込みパラメータを推定する。
実験結果から,本手法は時間-時系列観測の時間的関係を明らかにしつつ,ほとんどの最先端戦略と同等かそれ以上の競争力を有することが明らかとなった。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting [17.530885640317372]
本稿では,新しいプロンプトチューニングに基づく連続予測手法を提案する。
具体的には,基本時相グラフニューラルネットワークと連続的なプロンプトプールをメモリに格納する。
この手法により、モデルが広範囲な時間的データストリームから逐次学習し、対応する期間のタスクを達成できる。
論文 参考訳(メタデータ) (2024-10-16T14:12:11Z) - Causal Temporal Representation Learning with Nonstationary Sparse Transition [22.6420431022419]
Causal Temporal Representation Learning (Ctrl) 法は、複雑な非定常時間列の時間的因果ダイナミクスを特定することを目的としている。
この研究は、人間の直感的な理解と整合したスパース遷移の仮定を採用し、理論的な観点から識別可能性の結果を提示している。
本稿では,非定常スパース遷移を用いた因果時間表現学習(CtrlNS)を提案する。
論文 参考訳(メタデータ) (2024-09-05T00:38:27Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
UTEP(Unified S-Temporal Predictive Learning)は,マイクロテンポラリスケールとマクロテンポラリスケールを統合した再帰的および再帰的フリーな手法を再構築する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2023-10-09T16:17:42Z) - Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Networks [14.430635608400982]
連続時間時間ネットワークのための生成モデルを設計するためのフレームワークを提案する。
本稿では,本フレームワーク内のモデルに適合する手法と,所望の特性を持つ新しい時間ネットワークをシミュレートするアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-14T16:40:57Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
この作業は、共同設立者との因果推論を拡張します。
本稿では,ランダムな入力空間を持つ表現子定理に基づく因果推論のための変分推定手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T00:34:44Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。