Integrating HCI Datasets in Project-Based Machine Learning Courses: A College-Level Review and Case Study
- URL: http://arxiv.org/abs/2408.03472v1
- Date: Tue, 6 Aug 2024 23:05:15 GMT
- Title: Integrating HCI Datasets in Project-Based Machine Learning Courses: A College-Level Review and Case Study
- Authors: Xiaodong Qu, Matthew Key, Eric Luo, Chuhui Qiu,
- Abstract summary: This study explores the integration of real-world machine learning (ML) projects using human-computer interfaces (HCI) datasets in college-level courses.
- Score: 0.7499722271664147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the integration of real-world machine learning (ML) projects using human-computer interfaces (HCI) datasets in college-level courses to enhance both teaching and learning experiences. Employing a comprehensive literature review, course websites analysis, and a detailed case study, the research identifies best practices for incorporating HCI datasets into project-based ML education. Key f indings demonstrate increased student engagement, motivation, and skill development through hands-on projects, while instructors benefit from effective tools for teaching complex concepts. The study also addresses challenges such as data complexity and resource allocation, offering recommendations for future improvements. These insights provide a valuable framework for educators aiming to bridge the gap between
Related papers
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Enhancing E-Learning System Through Learning Management System (LMS)
Technologies: Reshape The Learner Experience [0.0]
This E-Learning System can fit any educational needs as follows: chat, virtual classes, supportive resources for the students, individual and group monitoring, and assessment using LMS as maximum efficiency.
arXiv Detail & Related papers (2023-09-01T02:19:08Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
We propose an automated framework for knowledge extraction, visual KG construction, and graph fusion for the major of Electronic Information.
Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI.
arXiv Detail & Related papers (2023-05-08T09:25:41Z) - Experience of Teaching Data Visualization using Project-based Learning [0.3437656066916039]
We show which input was provided when necessary for students to achieve their goals.
We discuss and compare the tools we found useful for students to accomplish their goals.
arXiv Detail & Related papers (2021-10-21T16:47:34Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Deeper Learning By Doing: Integrating Hands-On Research Projects Into a
Machine Learning Course [3.553493344868414]
This paper describes the organization of our project-based machine learning courses.
In addition to incorporating project-based learning in our courses, we aim to develop project-based learning components aligned with real-world tasks.
arXiv Detail & Related papers (2021-07-28T23:41:27Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z) - Key principles for workforce upskilling via online learning: a learning
analytics study of a professional course in additive manufacturing [2.014343808433054]
This study combines learning objective analysis and visual learning analytics to examine the relationships among learning trajectories, engagement, and performance.
The study also emphasizes broader strategies for course designers and instructors to align course assignments, learning objectives, and assessment measures with learner needs and interests.
arXiv Detail & Related papers (2020-08-15T00:30:56Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback.
We present a framework for curriculum learning (CL) in RL, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals.
arXiv Detail & Related papers (2020-03-10T20:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.