論文の概要: Opening the Black Box of 3D Reconstruction Error Analysis with VECTOR
- arxiv url: http://arxiv.org/abs/2408.03503v1
- Date: Wed, 7 Aug 2024 02:03:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-08 14:05:27.737279
- Title: Opening the Black Box of 3D Reconstruction Error Analysis with VECTOR
- Title(参考訳): VECTORを用いた3次元再構成誤差解析のブラックボックスを開く
- Authors: Racquel Fygenson, Kazi Jawad, Isabel Li, Francois Ayoub, Robert G. Deen, Scott Davidoff, Dominik Moritz, Mauricio Hess-Flores,
- Abstract要約: VECTORは、ステレオ再構成のエラー検査を改善するビジュアル解析ツールである。
VECTORはNASAジェット推進研究所のPerseverance Mars RoverとIngenuity Mars Helicopterと共同で開発された。
我々は、このツールが、2020年火星ミッションの地形復元のデバッグと改善にどのように使われたかを報告する。
- 参考スコア(独自算出の注目度): 8.142689309891368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction of 3D scenes from 2D images is a technical challenge that impacts domains from Earth and planetary sciences and space exploration to augmented and virtual reality. Typically, reconstruction algorithms first identify common features across images and then minimize reconstruction errors after estimating the shape of the terrain. This bundle adjustment (BA) step optimizes around a single, simplifying scalar value that obfuscates many possible causes of reconstruction errors (e.g., initial estimate of the position and orientation of the camera, lighting conditions, ease of feature detection in the terrain). Reconstruction errors can lead to inaccurate scientific inferences or endanger a spacecraft exploring a remote environment. To address this challenge, we present VECTOR, a visual analysis tool that improves error inspection for stereo reconstruction BA. VECTOR provides analysts with previously unavailable visibility into feature locations, camera pose, and computed 3D points. VECTOR was developed in partnership with the Perseverance Mars Rover and Ingenuity Mars Helicopter terrain reconstruction team at the NASA Jet Propulsion Laboratory. We report on how this tool was used to debug and improve terrain reconstruction for the Mars 2020 mission.
- Abstract(参考訳): 2D画像からの3Dシーンの再構築は、地球や惑星科学、宇宙探査、拡張現実、仮想現実といった分野に影響を及ぼす技術的課題である。
通常、再構成アルゴリズムは画像間で共通の特徴を識別し、地形の形状を推定した後の再構成誤差を最小限にする。
このバンドル調整(BA)ステップは、1つの周囲を最適化し、スカラー値を単純化し、多くの可能性のある再構成エラーの原因を難なくする(例えば、カメラの位置と方向の初期推定、照明条件、地形における特徴検出の容易さ)。
レコンストラクションエラーは、科学的推測の不正確さや、遠隔地環境を探索する宇宙船の危険に繋がる可能性がある。
この課題に対処するために,ステレオ再構成BAのエラー検査を改善する視覚解析ツールであるVECTORを提案する。
VECTORは、機能位置、カメラのポーズ、計算された3Dポイントについて、これまで利用できなかった可視性を提供する。
VECTORはNASAジェット推進研究所のPerseverance Mars RoverとIngenuity Mars Helicopterと共同で開発された。
我々は、このツールが、2020年火星ミッションの地形復元のデバッグと改善にどのように使われたかを報告する。
関連論文リスト
- AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis [57.249817395828174]
本研究では,3次元都市規模のメッシュからの擬似合成レンダリングと,実地レベルでのクラウドソース画像を組み合わせたスケーラブルなフレームワークを提案する。
擬似合成データは、幅広い空中視点をシミュレートする一方、実際のクラウドソース画像は、地上レベルの画像の視覚的忠実度を改善するのに役立つ。
このハイブリッドデータセットを使用して、いくつかの最先端のアルゴリズムを微調整し、実世界のゼロショット地上作業において大幅な改善を実現する。
論文 参考訳(メタデータ) (2025-04-17T17:57:05Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [44.20773507571372]
本稿では、小型アマチュア望遠鏡で撮影した映像を利用して、低地球軌道上の衛星の3次元再構成のための枠組みを提案する。
これらの望遠鏡から得られたビデオデータは、激しい動きのぼかし、大気の乱流、広汎な背景光汚染、焦点距離の延長、観測視点の制約など、標準的な3D再構成作業のデータと大きく異なる。
我々は,中国の宇宙ステーションの合成データセットと実際の観測データを用いて,地上観測から3次元空間オブジェクトを再構築する既存の手法に対する大きな優位性を示す。
論文 参考訳(メタデータ) (2024-04-29T03:13:09Z) - Indoor Obstacle Discovery on Reflective Ground via Monocular Camera [21.19387987977164]
視覚的障害物発見は、屋内移動ロボットの自律的なナビゲーションに向けた重要なステップである。
本稿では, この問題の鍵は, 反射や障害物に対する識別的特徴の獲得にあると論じる。
本稿では, 反射地におけるObstacle on Reflective Ground (ORG) の新たなデータセットについて紹介する。
論文 参考訳(メタデータ) (2024-01-02T22:07:44Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
モノクロ画像からの3次元運動回復のための従来の手法は、カメラ座標に依存するため、しばしば不足する。
W-HMRは、身体の歪み情報に基づいて「適切な」焦点長を予測する弱教師付き校正法である。
また,世界空間における可視的再構築のために,身体の向きを補正する OrientCorrect モジュールを提案する。
論文 参考訳(メタデータ) (2023-11-29T09:02:07Z) - MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices [78.20154723650333]
高品質な3次元地下構造は3次元物体再構成評価に不可欠である。
本稿では,モバイルデバイスを用いた新しいマルチビューRGBDデータセットを提案する。
我々は,ハイエンド3Dスキャナーを使わずに,精密な3次元地下構造が得られる。
論文 参考訳(メタデータ) (2023-03-03T14:02:50Z) - 3D reconstruction from spherical images: A review of techniques,
applications, and prospects [2.6432771146480283]
3次元再構成は、現代のフォトグラムシステムにおいてますます重要な役割を担っている。
プロ用および消費者向けの球面カメラの急速な進化と広範囲な利用により、球面画像は都市と屋内のシーンの3Dモデリングに大きな可能性を示している。
本研究は,データ取得,特徴検出とマッチング,画像配向,密マッチングの観点から,球面画像の3次元再構成技術の現状を詳細に調査する。
論文 参考訳(メタデータ) (2023-02-09T08:45:27Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
この研究は、カメラのポーズやオブジェクトのカテゴリを知らない少数の画像から、一般的な現実世界のオブジェクトを再構築する。
私たちの研究の要点は、形状再構成とポーズ推定という、2つの基本的な3D視覚問題を解決することです。
提案手法は,各ビューから3次元特徴を予測し,それらを入力画像と組み合わせて活用し,クロスビュー対応を確立する。
論文 参考訳(メタデータ) (2022-12-08T18:59:02Z) - MaRF: Representing Mars as Neural Radiance Fields [1.4680035572775534]
MARFは火星の環境を合成するためのフレームワークで、ローバーカメラの画像を何枚か集めている。
惑星地質学、シミュレートされた航法、形状解析などの惑星表面探査における重要な課題に対処する。
実験では,キュリオシティ・ローバー,パーセヴァンス・ローバー,インジェニティ・ヘリコプターによって捕獲された火星の実際のデータセットから生成された環境を実証した。
論文 参考訳(メタデータ) (2022-12-03T18:58:00Z) - Aerial Monocular 3D Object Detection [46.26215100532241]
本研究は,2次元画像空間と3次元物理空間の両方において,空中単分子物体検出を実現するために,DVDETというデュアルビュー検出システムを提案する。
この課題に対処するため,AirSIMとCARLAの共同シミュレーションによって生成されたAM3D-Simという新しい大規模シミュレーションデータセットと,DJI Matrice 300 RTKによって収集されたAM3D-Realという新しい実世界の空中データセットを提案する。
論文 参考訳(メタデータ) (2022-08-08T08:32:56Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Towards Non-Line-of-Sight Photography [48.491977359971855]
非視線イメージング(NLOS)は、隠された物体からの多重バウンス間接反射を捉えることに基づいている。
アクティブなNLOSイメージングシステムは、シーンを通しての光の飛行時間の捕捉に依存している。
我々はNLOS写真と呼ばれる新しい問題定式化を提案し、この欠陥に特に対処する。
論文 参考訳(メタデータ) (2021-09-16T08:07:13Z) - A Pose-only Solution to Visual Reconstruction and Navigation [23.86386627769292]
大規模なシーンやクリティカルなカメラの動きは、この目標を達成するために研究コミュニティが直面する大きな課題です。
私たちは、これらの課題を解決できるポーズオンリーのイメージングジオメトリフレームワークとアルゴリズムを立ち上げました。
論文 参考訳(メタデータ) (2021-03-02T07:21:08Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
本研究では,自動車の走行によって野生で捕獲されたセンサから歩行者の形状と動きを復元することを提案する。
再建された歩行者資産銀行をリアルな3Dシミュレーションシステムに組み込む。
シミュレーションしたLiDARデータを用いて,視覚知覚タスクに必要な実世界のデータ量を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2020-11-16T17:16:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。