1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your Language Model Thrives on Quality Data
- URL: http://arxiv.org/abs/2408.03506v1
- Date: Wed, 7 Aug 2024 02:14:52 GMT
- Title: 1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your Language Model Thrives on Quality Data
- Authors: Calvin Tan, Jerome Wang,
- Abstract summary: This paper presents a compute-efficient approach to pre-training a Language Model-the "1.5-Pints"-in only 9 days.
Based on MT-Bench (a benchmark that emulates human judgments), 1.5-Pints outperforms Apple's OpenELM and Microsoft's Phi.
This is achieved by a carefully curated pre-training dataset of 57 billion tokens, using a mix of automated and manual human review.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a compute-efficient approach to pre-training a Language Model-the "1.5-Pints"-in only 9 days, while outperforming state-of-the-art models as an instruction-following assistant.Based on MT-Bench (a benchmark that emulates human judgments), 1.5-Pints outperforms Apple's OpenELM and Microsoft's Phi.This is achieved by a carefully curated pre-training dataset of 57 billion tokens, using a mix of automated workflows and manual human review. The selection of the dataset prioritizes content that is considered expository and "textbook-like" to aid the model in reasoning and logical deduction, culminating in its overall ability as a strong and versatile AI model. In terms of the model architecture, we employed a modified Mistral tokenizer, alongside a Llama-2 architecture for wider compatibility. For training, we adopted the methodologies used by StableLM, TinyLlama, and Huggingface Zephyr. 1.5-Pints demonstrates that by focusing on data quality over quantity in LLM training, we can significantly reduce training time and resources required. We believe this approach will not only make pre-training more accessible but also reduce our carbon footprint. Our findings and resources from this research are open-sourced, aiming to facilitate further advancements in the field. The 1.5-Pints model is available in two versions: 2K and 16K context windows.
Related papers
- NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - POINTS: Improving Your Vision-language Model with Affordable Strategies [28.611705477757454]
We train a robust baseline model using latest advancements in vision-language models.
We filter pre-training data using perplexity, selecting the lowest perplexity data for training.
During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements.
arXiv Detail & Related papers (2024-09-07T13:41:37Z) - HelpSteer2: Open-source dataset for training top-performing reward models [9.214886217647157]
We develop HelpSteer2, a permissively licensed preference dataset.
HelpSteer2 consists of only ten thousand response pairs, an order of fewer than existing preference datasets.
We propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multi-attribute score predicted by our reward models.
arXiv Detail & Related papers (2024-06-12T22:28:08Z) - InternLM2 Technical Report [159.70692271378581]
This paper introduces InternLM2, an open-source Large Language Models (LLMs) that outperforms its predecessors in comprehensive evaluations across 6 dimensions and 30 benchmarks.
The pre-training process of InternLM2 is meticulously detailed, highlighting the preparation of diverse data types.
InternLM2 efficiently captures long-term dependencies, initially trained on 4k tokens before advancing to 32k tokens in pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-03-26T00:53:24Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
We propose a robust multilingual model to improve the quality of search results.
In pre-training stage, we adopt mlm task, classification task and contrastive learning task.
In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop)
arXiv Detail & Related papers (2023-01-31T07:31:34Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference.
We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch.
We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources.
arXiv Detail & Related papers (2021-06-20T15:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.