論文の概要: RepoMasterEval: Evaluating Code Completion via Real-World Repositories
- arxiv url: http://arxiv.org/abs/2408.03519v1
- Date: Wed, 7 Aug 2024 03:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:05:27.713691
- Title: RepoMasterEval: Evaluating Code Completion via Real-World Repositories
- Title(参考訳): RepoMasterEval: 実世界のリポジトリを通じてコード補完を評価する
- Authors: Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming Guan, Cuiyun Gao, Xia Liu, Ping Yang,
- Abstract要約: RepoMasterEvalは、現実のPythonとTypeScriptリポジトリから構築されたコード補完モデルを評価するための新しいベンチマークである。
モデル生成コードのテスト精度を向上させるため,テストケースの有効性を測定するために突然変異試験を用いる。
6つの最先端モデルに対する実証的な評価は、テスト議論がベンチマークの精度向上に重要であることを示している。
- 参考スコア(独自算出の注目度): 12.176098357240095
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the growing reliance on automated code completion tools in software development, the need for robust evaluation benchmarks has become critical. However, existing benchmarks focus more on code generation tasks in function and class level and provide rich text description to prompt the model. By contrast, such descriptive prompt is commonly unavailable in real development and code completion can occur in wider range of situations such as in the middle of a function or a code block. These limitations makes the evaluation poorly align with the practical scenarios of code completion tools. In this paper, we propose RepoMasterEval, a novel benchmark for evaluating code completion models constructed from real-world Python and TypeScript repositories. Each benchmark datum is generated by masking a code snippet (ground truth) from one source code file with existing test suites. To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases and we manually crafted new test cases for those test suites with low mutation score. Our empirical evaluation on 6 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark and RepoMasterEval is able to report difference in model performance in real-world scenarios. The deployment of RepoMasterEval in a collaborated company for one month also revealed that the benchmark is useful to give accurate feedback during model training and the score is in high correlation with the model's performance in practice. Based on our findings, we call for the software engineering community to build more LLM benchmarks tailored for code generation tools taking the practical and complex development environment into consideration.
- Abstract(参考訳): ソフトウェア開発における自動コード補完ツールへの依存が高まり、堅牢な評価ベンチマークの必要性が重要になっている。
しかし、既存のベンチマークでは、関数とクラスレベルのコード生成タスクをより重視し、モデルを促すリッチなテキスト記述を提供する。
対照的に、そのような記述的プロンプトは実際の開発では利用できないことが多く、関数の中央やコードブロックなど幅広い状況でコード補完が行われることがある。
これらの制限により、評価はコード補完ツールの実践的なシナリオとよく一致しない。
本稿では,実世界のPythonとTypeScriptリポジトリから構築されたコード補完モデルを評価するための新しいベンチマークであるRepoMasterEvalを提案する。
各ベンチマークダタムは、1つのソースコードファイルから既存のテストスイートでコードスニペット(グラウンド真理)をマスキングすることで生成される。
モデル生成コードのテスト精度を向上させるために,テストケースの有効性を測定するために突然変異テストを用い,変異スコアの低いテストスイートに対して,手作業で新しいテストケースを作成した。
6つの最先端モデルに対する実証的な評価は、テスト議論がベンチマークの精度向上に不可欠であることを示し、RepoMasterEvalは実世界のシナリオでモデル性能の違いを報告できることを示している。
また、RepoMasterEvalを1ヶ月共同で配置した結果、ベンチマークはモデルのトレーニング中に正確なフィードバックを与えるのに有用であり、スコアは実際のモデルのパフォーマンスと高い相関関係にあることが明らかになった。
私たちの発見に基づいて、我々は、実用的で複雑な開発環境を考慮したコード生成ツールに適したLCMベンチマークを構築するよう、ソフトウェアエンジニアリングコミュニティに呼びかけています。
関連論文リスト
- CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code [29.178248778212588]
ComplexCodeEvalは、様々な開発タスクで大きな言語モデル(LLM)を評価するために設計されたベンチマークである。
これには、上位のGitHubリポジトリから3,897のJavaサンプルと7,184のPythonサンプルが含まれている。
論文 参考訳(メタデータ) (2024-09-16T13:43:04Z) - Fix the Tests: Augmenting LLMs to Repair Test Cases with Static Collector and Neural Reranker [9.428021853841296]
本稿では, TROCtxsの精密かつ高精度な構築により, 旧来の検査ケースを自動的に修復する新しい手法であるSynTERを提案する。
構築されたTROCtxの増強により、幻覚は57.1%減少する。
論文 参考訳(メタデータ) (2024-07-04T04:24:43Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
ユーザ問題をテストケースに形式化するLLMベースのコードエージェントについて検討する。
我々は人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは,テスト生成用に設計されたシステムの性能を上回っている。
論文 参考訳(メタデータ) (2024-06-18T14:54:37Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
リポジトリレベルのコード生成を評価するために設計された新しいベンチマークである textbfmethodnamews を提案する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoderはリポジトリレベルのコード補完プロセスを合理化するフレームワークである。
類似性ベースのレトリバーと、事前訓練されたコード言語モデルが組み込まれている。
バニラ検索で拡張されたコード補完アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-03-22T13:54:46Z) - Execution-based Evaluation for Data Science Code Generation Models [97.96608263010913]
データサイエンスコード生成タスクの実行評価のための評価データセットであるExeDSを紹介する。
ExeDSにはJupyter Notebooksの534の問題が含まれており、それぞれがコードコンテキスト、タスク記述、参照プログラム、望ましい実行出力で構成されている。
表面形状評価スコアを高い精度で達成した5つの最先端コード生成モデルの実行性能を評価する。
論文 参考訳(メタデータ) (2022-11-17T07:04:11Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchoptは、機械学習で最適化ベンチマークを自動化、再生、公開するためのフレームワークである。
Benchoptは実験を実行、共有、拡張するための既製のツールを提供することで、コミュニティのベンチマークを簡単にする。
論文 参考訳(メタデータ) (2022-06-27T16:19:24Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。