Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation
- URL: http://arxiv.org/abs/2408.03533v2
- Date: Sun, 11 Aug 2024 09:08:59 GMT
- Title: Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation
- Authors: Jiachen Zhu, Jianghao Lin, Xinyi Dai, Bo Chen, Rong Shan, Jieming Zhu, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract summary: We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
- Score: 50.837277466987345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space. To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.
Related papers
- IterIS: Iterative Inference-Solving Alignment for LoRA Merging [14.263218227928729]
Low-rank adaptations (LoRAs) are widely used to fine-tune large models across various domains for specific downstream tasks.
LoRA merging presents an effective solution by combining multiple LoRAs into a unified adapter while maintaining data privacy.
arXiv Detail & Related papers (2024-11-21T19:04:02Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [38.51895517016953]
Sequential Recommendation task involves predicting the next item a user is likely to interact with, given their past interactions.
Recent research demonstrates the great impact of LLMs on sequential recommendation systems.
Due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms.
arXiv Detail & Related papers (2024-05-28T07:12:06Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
This article introduces DP-LoRA, a novel federated learning algorithm tailored for large language models (LLMs)
DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training.
arXiv Detail & Related papers (2023-12-29T06:50:38Z) - Ziya2: Data-centric Learning is All LLMs Need [41.44909548662012]
We propose Ziya2, a model with 13 billion parameters adopting LLaMA2 as the foundation model, and further pre-trained on 700 billion tokens.
Experiments show that Ziya2 significantly outperforms other models in multiple benchmarks especially with promising results compared to representative open-source ones.
arXiv Detail & Related papers (2023-11-06T17:49:34Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.