Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation
- URL: http://arxiv.org/abs/2501.13344v1
- Date: Thu, 23 Jan 2025 03:05:13 GMT
- Title: Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation
- Authors: Rong Shan, Jiachen Zhu, Jianghao Lin, Chenxu Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract summary: We propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels.
At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information.
For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks.
At the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components
- Score: 44.685176786857284
- License:
- Abstract: In this paper, we address the lifelong sequential behavior incomprehension problem in large language models (LLMs) for recommendation, where LLMs struggle to extract useful information from long user behavior sequences, even within their context limits. To tackle this, we propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels. At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information. For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks and improving LLMs's exploration of item relationships. Finally, at the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components, allowing better capture of sequential information. Moreover, we present new perspectives to compare current LoRA-based LLM4Rec methods, i.e. from both a composite and a decomposed view. We theoretically demonstrate that the ways they employ LoRA for recommendation are degraded versions of our CFLoRA, with different constraints on atom component interactions. Extensive experiments on three public datasets demonstrate ReLLaX's superiority over existing baselines and its ability to mitigate lifelong sequential behavior incomprehension effectively.
Related papers
- Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.
We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.