LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation
- URL: http://arxiv.org/abs/2503.01814v1
- Date: Mon, 03 Mar 2025 18:41:59 GMT
- Title: LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation
- Authors: Weizhi Zhang, Liangwei Yang, Wooseong Yang, Henry Peng Zou, Yuqing Liu, Ke Xu, Sourav Medya, Philip S. Yu,
- Abstract summary: Collaborative filtering models have shown strong performance in capturing user-item interactions for recommendation systems.<n>The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance.
- Score: 34.227734210743904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative filtering models, particularly graph-based approaches, have demonstrated strong performance in capturing user-item interactions for recommendation systems. However, they continue to struggle in cold-start and data-sparse scenarios. The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance, especially in cold-start settings. Despite their promise, LLMs pose challenges related to scalability and efficiency due to their high computational demands and limited ability to model complex user-item relationships effectively. In this work, we introduce a novel perspective on leveraging LLMs for CF model initialization. Through experiments, we uncover an embedding collapse issue when scaling CF models to larger embedding dimensions. To effectively harness large-scale LLM embeddings, we propose innovative selective initialization strategies utilizing random, uniform, and variance-based index sampling. Our comprehensive evaluation on multiple real-world datasets demonstrates significant performance gains across various CF models while maintaining a lower computational cost compared to existing LLM-based recommendation approaches.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks.<n>Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs like GPT, LLaMA, and Mistral.
arXiv Detail & Related papers (2024-12-17T06:48:24Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
This paper introduces Model-GLUE, a holistic Large Language Models scaling guideline.
We benchmark existing scaling techniques, especially selective merging, and variants of mixture.
We then formulate an optimal strategy for the selection and aggregation of a heterogeneous model zoo.
Our methodology involves the clustering of mergeable models and optimal merging strategy selection, and the integration of clusters.
arXiv Detail & Related papers (2024-10-07T15:55:55Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have been widely adopted due to their remarkable performance across various applications.
These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.
We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - SLMRec: Distilling Large Language Models into Small for Sequential Recommendation [38.51895517016953]
Sequential Recommendation task involves predicting the next item a user is likely to interact with, given their past interactions.<n>Recent research demonstrates the great impact of LLMs on sequential recommendation systems.<n>Due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms.
arXiv Detail & Related papers (2024-05-28T07:12:06Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.