PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model
- URL: http://arxiv.org/abs/2408.03540v1
- Date: Wed, 7 Aug 2024 04:38:03 GMT
- Title: PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model
- Authors: Yunlong Huang, Junshuo Liu, Ke Xian, Robert Caiming Qiu,
- Abstract summary: We propose a purely SSM-based approach with linear correlations for complexityD human pose estimation in monocular video video.
Specifically, we propose a bidirectional global temporal-local-temporal block that comprehensively models human joint relations within individual frames as well as across frames.
This strategy provides a more logical geometric ordering strategy, resulting in a combined-local spatial scan.
- Score: 7.286873011001679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have significantly advanced the field of 3D human pose estimation (HPE). However, existing transformer-based methods primarily use self-attention mechanisms for spatio-temporal modeling, leading to a quadratic complexity, unidirectional modeling of spatio-temporal relationships, and insufficient learning of spatial-temporal correlations. Recently, the Mamba architecture, utilizing the state space model (SSM), has exhibited superior long-range modeling capabilities in a variety of vision tasks with linear complexity. In this paper, we propose PoseMamba, a novel purely SSM-based approach with linear complexity for 3D human pose estimation in monocular video. Specifically, we propose a bidirectional global-local spatio-temporal SSM block that comprehensively models human joint relations within individual frames as well as temporal correlations across frames. Within this bidirectional global-local spatio-temporal SSM block, we introduce a reordering strategy to enhance the local modeling capability of the SSM. This strategy provides a more logical geometric scanning order and integrates it with the global SSM, resulting in a combined global-local spatial scan. We have quantitatively and qualitatively evaluated our approach using two benchmark datasets: Human3.6M and MPI-INF-3DHP. Extensive experiments demonstrate that PoseMamba achieves state-of-the-art performance on both datasets while maintaining a smaller model size and reducing computational costs. The code and models will be released.
Related papers
- Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
We take a global approach to exploit Transformer-temporal information with a concise Graph and Skipped Transformer architecture.
Specifically, in 3D pose stage, coarse-grained body parts are deployed to construct a fully data-driven adaptive model.
Experiments are conducted on Human3.6M, MPI-INF-3DHP and Human-Eva benchmarks.
arXiv Detail & Related papers (2024-07-03T10:42:09Z) - Double-chain Constraints for 3D Human Pose Estimation in Images and
Videos [21.42410292863492]
Reconstructing 3D poses from 2D poses lacking depth information is challenging due to the complexity and diversity of human motion.
We propose a novel model, called Double-chain Graph Convolutional Transformer (DC-GCT), to constrain the pose.
We show that DC-GCT achieves state-of-the-art performance on two challenging datasets.
arXiv Detail & Related papers (2023-08-10T02:41:18Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
Recent solutions have been introduced to estimate 3D human pose from 2D keypoint sequence by considering body joints among all frames globally to learn-temporal correlation.
We propose Mix Mix, which has temporal transformer block to separately model the temporal motion of each joint and a transformer block inter-joint spatial correlation.
In addition, the network output is extended from the central frame to entire frames of input video, improving the coherence between the input and output benchmarks.
arXiv Detail & Related papers (2022-03-02T04:20:59Z) - Motion Prediction via Joint Dependency Modeling in Phase Space [40.54430409142653]
We introduce a novel convolutional neural model to leverage explicit prior knowledge of motion anatomy.
We then propose a global optimization module that learns the implicit relationships between individual joint features.
Our method is evaluated on large-scale 3D human motion benchmark datasets.
arXiv Detail & Related papers (2022-01-07T08:30:01Z) - THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers [67.8628917474705]
THUNDR is a transformer-based deep neural network methodology to reconstruct the 3d pose and shape of people.
We show state-of-the-art results on Human3.6M and 3DPW, for both the fully-supervised and the self-supervised models.
We observe very solid 3d reconstruction performance for difficult human poses collected in the wild.
arXiv Detail & Related papers (2021-06-17T09:09:24Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.