Time is Not Enough: Time-Frequency based Explanation for Time-Series Black-Box Models
- URL: http://arxiv.org/abs/2408.03636v2
- Date: Mon, 12 Aug 2024 14:39:56 GMT
- Title: Time is Not Enough: Time-Frequency based Explanation for Time-Series Black-Box Models
- Authors: Hyunseung Chung, Sumin Jo, Yeonsu Kwon, Edward Choi,
- Abstract summary: We present Spectral eXplanation (SpectralX), an XAI framework that provides time-frequency explanations for time-series black-box classifiers.
We also introduce Feature Importance Approximations (FIA), a new perturbation-based XAI method.
- Score: 12.575427166236844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the massive attention given to time-series explanations due to their extensive applications, a notable limitation in existing approaches is their primary reliance on the time-domain. This overlooks the inherent characteristic of time-series data containing both time and frequency features. In this work, we present Spectral eXplanation (SpectralX), an XAI framework that provides time-frequency explanations for time-series black-box classifiers. This easily adaptable framework enables users to "plug-in" various perturbation-based XAI methods for any pre-trained time-series classification models to assess their impact on the explanation quality without having to modify the framework architecture. Additionally, we introduce Feature Importance Approximations (FIA), a new perturbation-based XAI method. These methods consist of feature insertion, deletion, and combination techniques to enhance computational efficiency and class-specific explanations in time-series classification tasks. We conduct extensive experiments in the generated synthetic dataset and various UCR Time-Series datasets to first compare the explanation performance of FIA and other existing perturbation-based XAI methods in both time-domain and time-frequency domain, and then show the superiority of our FIA in the time-frequency domain with the SpectralX framework. Finally, we conduct a user study to confirm the practicality of our FIA in SpectralX framework for class-specific time-frequency based time-series explanations. The source code is available in https://github.com/gustmd0121/Time_is_not_Enough
Related papers
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Shapelet-based Model-agnostic Counterfactual Local Explanations for Time
Series Classification [5.866975269666861]
We propose a model-agnostic instance-based post-hoc explainability method for time series classification.
The proposed algorithm, namely Time-CF, leverages shapelets and TimeGAN to provide counterfactual explanations for arbitrary time series classifiers.
arXiv Detail & Related papers (2024-02-02T11:57:53Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
Asynchronous Time Series is a time series where all the channels are observed asynchronously-independently.
This paper proposes a novel framework, that is highly scalable and memory efficient, for the asynchronous time series classification task.
We explore convolutional neural networks, which are well researched for the closely related problem-classification of regularly sampled and fully observed time series.
arXiv Detail & Related papers (2022-08-24T08:47:36Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - timeXplain -- A Framework for Explaining the Predictions of Time Series
Classifiers [3.6433472230928428]
We present novel domain mappings for the time domain, frequency domain, and time series statistics.
We analyze their explicative power as well as their limits.
We employ a novel evaluation metric to experimentally compare timeXplain to several model-specific explanation approaches.
arXiv Detail & Related papers (2020-07-15T10:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.